PRISM: PRogressive dependency maxImization for Scale-invariant image Matching
- URL: http://arxiv.org/abs/2408.03598v1
- Date: Wed, 7 Aug 2024 07:35:17 GMT
- Title: PRISM: PRogressive dependency maxImization for Scale-invariant image Matching
- Authors: Xudong Cai, Yongcai Wang, Lun Luo, Minhang Wang, Deying Li, Jintao Xu, Weihao Gu, Rui Ai,
- Abstract summary: We propose PRogressive dependency maxImization for Scale-invariant image Matching (PRISM)
Our method's superior matching performance and generalization capability are confirmed by leading accuracy across various evaluation benchmarks and downstream tasks.
- Score: 4.9521269535586185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image matching aims at identifying corresponding points between a pair of images. Currently, detector-free methods have shown impressive performance in challenging scenarios, thanks to their capability of generating dense matches and global receptive field. However, performing feature interaction and proposing matches across the entire image is unnecessary, because not all image regions contribute to the matching process. Interacting and matching in unmatchable areas can introduce errors, reducing matching accuracy and efficiency. Meanwhile, the scale discrepancy issue still troubles existing methods. To address above issues, we propose PRogressive dependency maxImization for Scale-invariant image Matching (PRISM), which jointly prunes irrelevant patch features and tackles the scale discrepancy. To do this, we firstly present a Multi-scale Pruning Module (MPM) to adaptively prune irrelevant features by maximizing the dependency between the two feature sets. Moreover, we design the Scale-Aware Dynamic Pruning Attention (SADPA) to aggregate information from different scales via a hierarchical design. Our method's superior matching performance and generalization capability are confirmed by leading accuracy across various evaluation benchmarks and downstream tasks. The code is publicly available at https://github.com/Master-cai/PRISM.
Related papers
- AMatFormer: Efficient Feature Matching via Anchor Matching Transformer [34.08771267009364]
We propose a novel efficient Anchor Matching Transformer (AMatFormer) for the feature matching problem.
AMatFormer has two main aspects: First, it mainly conducts self-/cross-attention on some anchor features and leverages these anchor features as message bottleneck.
Experiments on several benchmarks demonstrate the effectiveness and efficiency of the proposed AMatFormer matching approach.
arXiv Detail & Related papers (2023-05-30T16:54:10Z) - Self-similarity Driven Scale-invariant Learning for Weakly Supervised
Person Search [66.95134080902717]
We propose a novel one-step framework, named Self-similarity driven Scale-invariant Learning (SSL)
We introduce a Multi-scale Exemplar Branch to guide the network in concentrating on the foreground and learning scale-invariant features.
Experiments on PRW and CUHK-SYSU databases demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2023-02-25T04:48:11Z) - Adaptive Assignment for Geometry Aware Local Feature Matching [22.818457285745733]
detector-free feature matching approaches are currently attracting great attention thanks to their excellent performance.
We introduce AdaMatcher, which accomplishes the feature correlation and co-visible area estimation through an elaborate feature interaction module.
AdaMatcher then performs adaptive assignment on patch-level matching while estimating the scales between images, and finally refines the co-visible matches through scale alignment and sub-pixel regression module.
arXiv Detail & Related papers (2022-07-18T08:22:18Z) - Scale-Net: Learning to Reduce Scale Differences for Large-Scale
Invariant Image Matching [7.297352404640492]
We propose a scale-difference-aware image matching method (SDAIM) that reduces image scale differences before local feature extraction.
In order to accurately estimate the scale ratio, we propose a covisibility-attention-reinforced matching module (CVARM) and then design a novel neural network, termed as Scale-Net.
arXiv Detail & Related papers (2021-12-20T12:35:36Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
We propose a multi-level contrastive learning approach for semantic matching.
We show that image-level contrastive learning is a key component to encourage the convolutional features to find correspondence between similar objects.
arXiv Detail & Related papers (2021-09-22T18:34:14Z) - Learning to Focus: Cascaded Feature Matching Network for Few-shot Image
Recognition [38.49419948988415]
Deep networks can learn to accurately recognize objects of a category by training on a large number of images.
A meta-learning challenge known as a low-shot image recognition task comes when only a few images with annotations are available for learning a recognition model for one category.
Our method, called Cascaded Feature Matching Network (CFMN), is proposed to solve this problem.
Experiments for few-shot learning on two standard datasets, emphminiImageNet and Omniglot, have confirmed the effectiveness of our method.
arXiv Detail & Related papers (2021-01-13T11:37:28Z) - GOCor: Bringing Globally Optimized Correspondence Volumes into Your
Neural Network [176.3781969089004]
Feature correlation layer serves as a key neural network module in computer vision problems that involve dense correspondences between image pairs.
We propose GOCor, a fully differentiable dense matching module, acting as a direct replacement to the feature correlation layer.
Our approach significantly outperforms the feature correlation layer for the tasks of geometric matching, optical flow, and dense semantic matching.
arXiv Detail & Related papers (2020-09-16T17:33:01Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
We propose the aggregate interaction modules to integrate the features from adjacent levels.
To obtain more efficient multi-scale features, the self-interaction modules are embedded in each decoder unit.
Experimental results on five benchmark datasets demonstrate that the proposed method without any post-processing performs favorably against 23 state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-17T15:41:37Z) - Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments [57.33699905852397]
We propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons.
Our method simultaneously clusters the data while enforcing consistency between cluster assignments.
Our method can be trained with large and small batches and can scale to unlimited amounts of data.
arXiv Detail & Related papers (2020-06-17T14:00:42Z) - Improving Few-shot Learning by Spatially-aware Matching and
CrossTransformer [116.46533207849619]
We study the impact of scale and location mismatch in the few-shot learning scenario.
We propose a novel Spatially-aware Matching scheme to effectively perform matching across multiple scales and locations.
arXiv Detail & Related papers (2020-01-06T14:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.