論文の概要: Improving the quality of Persian clinical text with a novel spelling correction system
- arxiv url: http://arxiv.org/abs/2408.03622v1
- Date: Wed, 7 Aug 2024 08:31:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 13:34:00.738438
- Title: Improving the quality of Persian clinical text with a novel spelling correction system
- Title(参考訳): 新しい綴り訂正システムによるペルシア語臨床テキストの品質向上
- Authors: Seyed Mohammad Sadegh Dashti, Seyedeh Fatemeh Dashti,
- Abstract要約: エレクトロニック・ヘルス・レコード(EHR)のスペルの精度は、効率的な臨床ケア、研究、患者の安全確保にとって重要な要素である。
本研究は,ペルシャ語臨床テキストにおける綴り誤りの検出と修正のための革新的なアプローチを開発することを目的とした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: The accuracy of spelling in Electronic Health Records (EHRs) is a critical factor for efficient clinical care, research, and ensuring patient safety. The Persian language, with its abundant vocabulary and complex characteristics, poses unique challenges for real-word error correction. This research aimed to develop an innovative approach for detecting and correcting spelling errors in Persian clinical text. Methods: Our strategy employs a state-of-the-art pre-trained model that has been meticulously fine-tuned specifically for the task of spelling correction in the Persian clinical domain. This model is complemented by an innovative orthographic similarity matching algorithm, PERTO, which uses visual similarity of characters for ranking correction candidates. Results: The evaluation of our approach demonstrated its robustness and precision in detecting and rectifying word errors in Persian clinical text. In terms of non-word error correction, our model achieved an F1-Score of 90.0% when the PERTO algorithm was employed. For real-word error detection, our model demonstrated its highest performance, achieving an F1-Score of 90.6%. Furthermore, the model reached its highest F1-Score of 91.5% for real-word error correction when the PERTO algorithm was employed. Conclusions: Despite certain limitations, our method represents a substantial advancement in the field of spelling error detection and correction for Persian clinical text. By effectively addressing the unique challenges posed by the Persian language, our approach paves the way for more accurate and efficient clinical documentation, contributing to improved patient care and safety. Future research could explore its use in other areas of the Persian medical domain, enhancing its impact and utility.
- Abstract(参考訳): 背景:Electronic Health Records (EHRs) におけるスペルの精度は, 効率的な臨床ケア, 研究, 患者の安全確保にとって重要な要素である。
ペルシャ語は語彙が豊富で複雑な特徴を持つため、実際の単語の誤り訂正には独自の課題が生じる。
本研究は,ペルシャ語臨床テキストにおける綴り誤りの検出と修正のための革新的なアプローチを開発することを目的とした。
方法: ペルシャのクリニカルドメインにおけるスペル補正に特化して精巧に微調整された,最先端の事前訓練モデルを用いている。
このモデルは、文字の視覚的類似性を利用してランク付け候補のランク付けを行う、革新的な正書法類似性マッチングアルゴリズムPERTOによって補完される。
結果:ペルシャ語臨床テキストにおける単語誤りの検出と修正における頑健さと精度について検討した。
非単語誤り訂正では,PERTOアルゴリズムを用いた場合,F1スコア90.0%を達成した。
実単語誤り検出では,F1スコア90.6%を達成し,高い性能を示した。
さらに、PERTOアルゴリズムが採用されたとき、実単語誤り訂正のためのF1スコアは91.5%に達した。
結論:ペルシャ語の臨床テキストの綴り誤り検出と訂正の分野では,一定の限界があるにもかかわらず,本手法は著しく進歩している。
ペルシャ語がもたらす固有の課題を効果的に解決することで、我々のアプローチはより正確で効率的な臨床文書作成の道を開き、患者のケアと安全性の向上に貢献します。
将来の研究は、ペルシャの医療領域の他の領域での使用を探求し、その影響と実用性を高める可能性がある。
関連論文リスト
- Automatic Real-word Error Correction in Persian Text [0.0]
本稿では,ペルシャ語テキストにおける高精度かつ効率的な実単語誤り訂正のための最先端手法を提案する。
我々は,誤り検出と訂正の有効性を高めるために,意味解析,特徴選択,高度な分類器を用いる。
本手法は,検出段階で96.6%,補正時に99.1%の精度でF測定を行う。
論文 参考訳(メタデータ) (2024-07-20T07:50:52Z) - PERCORE: A Deep Learning-Based Framework for Persian Spelling Correction with Phonetic Analysis [0.0]
本研究では,ディープラーニング技術と音声解析をシームレスに統合したペルシャ語スペル訂正システムを提案する。
提案手法は,文脈分析と音韻的洞察を効果的に組み合わせ,非単語と実単語の綴り誤りを正確に補正する。
広帯域データセットの徹底的な評価により,既存手法と比較してシステムの性能が向上することを確認した。
論文 参考訳(メタデータ) (2024-07-20T07:41:04Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Detecting automatically the layout of clinical documents to enhance the
performances of downstream natural language processing [53.797797404164946]
我々は,臨床用PDF文書を処理し,臨床用テキストのみを抽出するアルゴリズムを設計した。
このアルゴリズムは、PDFを使った最初のテキスト抽出と、続いてボディテキスト、左書き、フッタなどのカテゴリに分類される。
それぞれのセクションのテキストから興味ある医学的概念を抽出し,医療的パフォーマンスを評価した。
論文 参考訳(メタデータ) (2023-05-23T08:38:33Z) - Persian Typographical Error Type Detection Using Deep Neural Networks on Algorithmically-Generated Misspellings [2.2503811834154104]
タイポグラフィーによるペルシャのエラータイプ検出は比較的調査の少ない地域である。
本稿では,ペルシャ語文の誤字を検出するための説得力のあるアプローチを提案する。
最終手法の結果は競争力が高く、精度は97.62%、精度は98.83%、リコールは98.61%、速度は他を上回った。
論文 参考訳(メタデータ) (2023-05-19T15:05:39Z) - FineEHR: Refine Clinical Note Representations to Improve Mortality
Prediction [3.9026461169566673]
大規模な電子健康記録は、臨床テキストとバイタルサインデータの豊富な機械学習モデルを提供する。
臨床ノート分析のための高度な自然言語処理(NLP)アルゴリズムの出現にもかかわらず、生臨床データに存在する複雑なテキスト構造とノイズは重大な課題となっている。
本稿では,2つの表現学習技術,すなわちメートル法学習と微調整技術を用いて,臨床ノートの埋め込みを洗練させるシステムFINEEHRを提案する。
論文 参考訳(メタデータ) (2023-04-24T02:42:52Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - A transformer-based spelling error correction framework for Bangla and resource scarce Indic languages [2.5874041837241304]
スペル訂正(スペルりょう、英: Spelling error correction)は、テキスト中のミスペル語を識別し、修正するタスクである。
バングラ語と資源不足のIndic言語におけるスペルエラー訂正の取り組みは、ルールベース、統計、機械学習ベースの手法に重点を置いていた。
本稿では,従来の問題に対処し,デノナイジング変換器をベースとした新しい検出器-ピューリフィエータ-コレクタDPCを提案する。
論文 参考訳(メタデータ) (2022-11-07T17:59:05Z) - NUVA: A Naming Utterance Verifier for Aphasia Treatment [49.114436579008476]
失語症(PWA)患者の治療介入に対する反応の診断とモニタリングの両立のための画像命名タスクを用いた音声性能評価
本稿では,失語症脳卒中患者の「正しい」と「正しくない」を分類する深層学習要素を組み込んだ発話検証システムであるNUVAについて述べる。
イギリス系英語8ヶ国語でのテストでは、システムの性能精度は83.6%から93.6%の範囲であり、10倍のクロスバリデーション平均は89.5%であった。
論文 参考訳(メタデータ) (2021-02-10T13:00:29Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
我々はMedLaneという名の新しいデータセットを構築し、自動化された臨床言語簡易化手法の開発と評価を支援する。
我々は,人間のアノテーションの手順に従い,最先端のパフォーマンスを実現するDECLAREと呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-04T06:09:02Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。