Early Prediction of Causes (not Effects) in Healthcare by Long-Term Clinical Time Series Forecasting
- URL: http://arxiv.org/abs/2408.03816v2
- Date: Mon, 26 Aug 2024 13:12:45 GMT
- Title: Early Prediction of Causes (not Effects) in Healthcare by Long-Term Clinical Time Series Forecasting
- Authors: Michael Staniek, Marius Fracarolli, Michael Hagmann, Stefan Riezler,
- Abstract summary: We propose to directly predict the causes via time series forecasting (TSF) of clinical variables.
Because model training does not rely on a particular label anymore, the forecasted data can be used to predict any consensus-based label.
- Score: 11.96384267146423
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Machine learning for early syndrome diagnosis aims to solve the intricate task of predicting a ground truth label that most often is the outcome (effect) of a medical consensus definition applied to observed clinical measurements (causes), given clinical measurements observed several hours before. Instead of focusing on the prediction of the future effect, we propose to directly predict the causes via time series forecasting (TSF) of clinical variables and determine the effect by applying the gold standard consensus definition to the forecasted values. This method has the invaluable advantage of being straightforwardly interpretable to clinical practitioners, and because model training does not rely on a particular label anymore, the forecasted data can be used to predict any consensus-based label. We exemplify our method by means of long-term TSF with Transformer models, with a focus on accurate prediction of sparse clinical variables involved in the SOFA-based Sepsis-3 definition and the new Simplified Acute Physiology Score (SAPS-II) definition. Our experiments are conducted on two datasets and show that contrary to recent proposals which advocate set function encoders for time series and direct multi-step decoders, best results are achieved by a combination of standard dense encoders with iterative multi-step decoders. The key for success of iterative multi-step decoding can be attributed to its ability to capture cross-variate dependencies and to a student forcing training strategy that teaches the model to rely on its own previous time step predictions for the next time step prediction.
Related papers
- TFT-multi: simultaneous forecasting of vital sign trajectories in the ICU [0.0]
Trajectory forecasting in healthcare data has been an important area of research in precision care and clinical integration for computational methods.
We extend the framework temporal fusion transformer (TFT), a multi-horizon time series prediction tool, and propose TFT-multi.
We apply TFT-multi to forecast 5 vital signs recorded in the intensive care unit: blood pressure, pulse, SpO2, temperature and respiratory rate.
arXiv Detail & Related papers (2024-09-23T22:36:37Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Preictal Period Optimization for Deep Learning-Based Epileptic Seizure Prediction [0.0]
We develop a competitive deep learning model for seizure prediction using scalp electroencephalogram (EEG) signals.
We trained and evaluated our model on 19 pediatric patients of the open-access CHB-MIT dataset in a subject-specific manner.
Using the OPP of each patient, preictal and interictal segments were correctly identified with an average sensitivity of 99.31%, specificity of 95.34%, AUC of 99.35%, and F1- score of 97.46%.
arXiv Detail & Related papers (2024-07-20T13:49:14Z) - Uncertainty Quantification on Clinical Trial Outcome Prediction [37.238845949535616]
We propose incorporating uncertainty quantification into clinical trial outcome predictions.
Our main goal is to enhance the model's ability to discern nuanced differences.
We have adopted a selective classification approach to fulfill our objective.
arXiv Detail & Related papers (2024-01-07T13:48:05Z) - HypUC: Hyperfine Uncertainty Calibration with Gradient-boosted
Corrections for Reliable Regression on Imbalanced Electrocardiograms [3.482894964998886]
We propose HypUC, a framework for imbalanced probabilistic regression in medical time series.
HypUC is evaluated on a large, diverse, real-world dataset of ECGs collected from millions of patients.
arXiv Detail & Related papers (2023-11-23T06:17:31Z) - Early Warning Prediction with Automatic Labeling in Epilepsy Patients [4.6700203020828885]
We propose a meta learning framework to improve the prediction of early ictal signals.
The proposed bi-level optimization framework can help automatically label noisy data at the early ictal stage.
arXiv Detail & Related papers (2023-10-09T18:12:46Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Can Current Explainability Help Provide References in Clinical Notes to
Support Humans Annotate Medical Codes? [53.45585591262433]
We present an explainable Read, Attend, and Code (xRAC) framework and assess two approaches, attention score-based xRAC-ATTN and model-agnostic knowledge-distillation-based xRAC-KD.
We find that the supporting evidence text highlighted by xRAC-ATTN is of higher quality than xRAC-KD whereas xRAC-KD has potential advantages in production deployment scenarios.
arXiv Detail & Related papers (2022-10-28T04:06:07Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.