論文の概要: Fast Sprite Decomposition from Animated Graphics
- arxiv url: http://arxiv.org/abs/2408.03923v1
- Date: Wed, 7 Aug 2024 17:30:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 12:35:07.550998
- Title: Fast Sprite Decomposition from Animated Graphics
- Title(参考訳): アニメーショングラフィックスからの高速スプライト分解
- Authors: Tomoyuki Suzuki, Kotaro Kikuchi, Kota Yamaguchi,
- Abstract要約: アニメーショングラフィックをスプライト(基本要素や層)に分解する手法を提案する。
効率的のために,スプライトの静的テクスチャを仮定し,テクスチャ先行モデルを用いたアーティファクトの防止と探索空間の削減を図る。
本研究では,オンラインデザインサービスからCrello Animationデータセットを構築し,抽出したスプライトの品質を測定するための定量的指標を定義した。
- 参考スコア(独自算出の注目度): 6.281229317487581
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an approach to decomposing animated graphics into sprites, a set of basic elements or layers. Our approach builds on the optimization of sprite parameters to fit the raster video. For efficiency, we assume static textures for sprites to reduce the search space while preventing artifacts using a texture prior model. To further speed up the optimization, we introduce the initialization of the sprite parameters utilizing a pre-trained video object segmentation model and user input of single frame annotations. For our study, we construct the Crello Animation dataset from an online design service and define quantitative metrics to measure the quality of the extracted sprites. Experiments show that our method significantly outperforms baselines for similar decomposition tasks in terms of the quality/efficiency tradeoff.
- Abstract(参考訳): 本稿では,アニメーショングラフィックをスプライト(基本要素や層)に分解する手法を提案する。
提案手法は,ラスタビデオに適合するスプライトパラメータの最適化に基づいている。
効率的のために,スプライトの静的テクスチャを仮定し,テクスチャ先行モデルを用いたアーティファクトの防止と探索空間の削減を図る。
さらに最適化を高速化するために,事前訓練されたビデオオブジェクト分割モデルと単一フレームアノテーションのユーザ入力を用いたスプライトパラメータの初期化を導入する。
本研究では,オンラインデザインサービスからCrello Animationデータセットを構築し,抽出したスプライトの品質を測定するための定量的指標を定義した。
実験の結果,本手法は品質/効率のトレードオフの観点から,類似の分解タスクのベースラインを著しく上回ることがわかった。
関連論文リスト
- UniAnimate: Taming Unified Video Diffusion Models for Consistent Human Image Animation [53.16986875759286]
We present a UniAnimate framework to enable efficient and long-term human video generation。
我々は、姿勢案内やノイズビデオとともに参照画像を共通の特徴空間にマッピングする。
また、ランダムノイズ入力と第1フレーム条件入力をサポートする統一ノイズ入力を提案する。
論文 参考訳(メタデータ) (2024-06-03T10:51:10Z) - AniClipart: Clipart Animation with Text-to-Video Priors [28.76809141136148]
AniClipartは、静的な画像をテキストからビデオへの事前案内による高品質なモーションシーケンスに変換するシステムである。
実験結果から,提案したAniClipartは既存の画像・映像生成モデルより一貫して優れていることがわかった。
論文 参考訳(メタデータ) (2024-04-18T17:24:28Z) - MagicAnimate: Temporally Consistent Human Image Animation using
Diffusion Model [74.84435399451573]
本稿では、特定の動きシーケンスに従って、特定の参照アイデンティティのビデオを生成することを目的とした、人間の画像アニメーションタスクについて検討する。
既存のアニメーションは、通常、フレームウォーピング技術を用いて参照画像を目標運動に向けてアニメーションする。
MagicAnimateは,時間的一貫性の向上,参照画像の忠実な保存,アニメーションの忠実性向上を目的とした,拡散に基づくフレームワークである。
論文 参考訳(メタデータ) (2023-11-27T18:32:31Z) - Sketch Video Synthesis [52.134906766625164]
フレームワイドB'ezier曲線で表現されたビデオのスケッチを行うための新しいフレームワークを提案する。
本手法は、スケッチベースのビデオ編集やビデオ合成によるビデオ再生における応用を解放する。
論文 参考訳(メタデータ) (2023-11-26T14:14:04Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
本稿では,3次元プリミティブを用いて,シンプルでコンパクトで動作可能な3次元世界表現を実現する手法を提案する。
既存の3次元入力データに依存するプリミティブ分解法とは異なり,本手法は画像を直接操作する。
得られたテクスチャ化されたプリミティブは入力画像を忠実に再構成し、視覚的な3Dポイントを正確にモデル化する。
論文 参考訳(メタデータ) (2023-07-11T17:58:31Z) - DiffSketcher: Text Guided Vector Sketch Synthesis through Latent
Diffusion Models [33.6615688030998]
DiffSketcherは、自然言語入力を使用してテキストベクトル化されたフリーハンドスケッチを作成する革新的なアルゴリズムである。
我々の実験は、DiffSketcherが以前の作業よりも高い品質を実現していることを示している。
論文 参考訳(メタデータ) (2023-06-26T13:30:38Z) - Unsupervised Learning of Style-Aware Facial Animation from Real Acting
Performances [3.95944314850151]
本稿では, ブレンド形状, 動的テクスチャ, ニューラルレンダリングに基づく写真リアルな頭部モデルのテキスト/音声駆動アニメーションのための新しい手法を提案する。
本手法は,テキストや音声をアニメーションパラメータの列に変換する条件付きCNNに基づいている。
リアルなリアルタイムレンダリングのために、私たちは、改良された色と前景マットを演算することで、ピクセル化ベースのレンダリングを洗練するU-Netを訓練します。
論文 参考訳(メタデータ) (2023-06-16T17:58:04Z) - Learning Data-Driven Vector-Quantized Degradation Model for Animation
Video Super-Resolution [59.71387128485845]
アニメーションビデオの特徴を探求し、より実用的なアニメーションVSRモデルのための実世界のアニメーションデータの豊富な事前情報を活用する。
本稿では,グローバルな構造から局所的な詳細を分解する,マルチスケールなベクトル量子化分解モデルを提案する。
先行データを抽出するために、リッチコンテンツリアルアニメーション低品質(RAL)ビデオデータセットを収集する。
論文 参考訳(メタデータ) (2023-03-17T08:11:14Z) - You Can Ground Earlier than See: An Effective and Efficient Pipeline for
Temporal Sentence Grounding in Compressed Videos [56.676761067861236]
ビデオがトリミングされていない場合、時間的文のグラウンド化は、文問合せに従って目的のモーメントを意味的に見つけることを目的としている。
それまでの優れた作品は、かなり成功したが、それらはデコードされたフレームから抽出されたハイレベルな視覚的特徴にのみ焦点を当てている。
本稿では,圧縮された映像を直接視覚入力として利用する,圧縮された領域のTSGを提案する。
論文 参考訳(メタデータ) (2023-03-14T12:53:27Z) - Improving the Perceptual Quality of 2D Animation Interpolation [37.04208600867858]
伝統的な2Dアニメーションは労働集約的であり、しばしばアニメーターは1秒間に12枚のイラストを描く必要がある。
低いフレームレートは大きな変位と閉塞をもたらし、例えばラインやソリッドカラー領域のような個々の知覚要素は、テクスチャ指向の畳み込みネットワークに困難をもたらす。
以前の研究はこれらの問題に対処しようとしたが、計算不能なメソッドを使用し、ピクセル完全性能に重点を置いていた。
私たちは、この芸術領域の知覚的品質を重視した、より適切なスケーラブルなシステムを構築します。
論文 参考訳(メタデータ) (2021-11-24T20:51:29Z) - Temporal Parameter-free Deep Skinning of Animated Meshes [0.0]
アニメーション圧縮は、アニメーションメッシュの効率的なストレージ、ストリーミング、再生に不可欠である。
従来の研究は、スキン変換と重みを導出することで、効率的な圧縮技術を提示してきた。
本稿では,骨の影響のあるクラスターに頂点を割り当て,深層学習を用いて重みを導出する手法を提案する。
論文 参考訳(メタデータ) (2021-09-15T12:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。