Modeling of New Energy Vehicles' Impact on Urban Ecology Focusing on Behavior
- URL: http://arxiv.org/abs/2406.06602v1
- Date: Thu, 6 Jun 2024 14:03:52 GMT
- Title: Modeling of New Energy Vehicles' Impact on Urban Ecology Focusing on Behavior
- Authors: Run-Xuan Tang,
- Abstract summary: surging demand for new energy vehicles is driven by the imperative to conserve energy, reduce emissions, and enhance the ecological ambiance.
behavioral analysis and mining usage patterns of new energy vehicles can be identified.
Environmental computational modeling method has been proposed to simulate the interaction between new energy vehicles and the environment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The surging demand for new energy vehicles is driven by the imperative to conserve energy, reduce emissions, and enhance the ecological ambiance. By conducting behavioral analysis and mining usage patterns of new energy vehicles, particular patterns can be identified. For instance, overloading the battery, operating with low battery power, and driving at excessive speeds can all detrimentally affect the battery's performance. To assess the impact of such driving behavior on the urban ecology, an environmental computational modeling method has been proposed to simulate the interaction between new energy vehicles and the environment. To extend the time series data of the vehicle's entire life cycle and the ecological environment within the model sequence data, the LSTM model with Bayesian optimizer is utilized for simulation. The analysis revealed the detrimental effects of poor driving behavior on the environment.
Related papers
- EcoFollower: An Environment-Friendly Car Following Model Considering Fuel Consumption [9.42048156323799]
This study introduces EcoFollower, a novel eco-car-following model developed using reinforcement learning (RL) to optimize fuel consumption in car-following scenarios.
The model achieved a significant reduction in fuel consumption, lowering it by 10.42% compared to actual driving scenarios.
arXiv Detail & Related papers (2024-07-22T16:48:37Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - Data-driven Energy Consumption Modelling for Electric Micromobility using an Open Dataset [6.000804135802873]
This paper presents an open dataset for energy modelling research related to E-Scooters and E-Bikes.
We provide a comprehensive analysis of energy consumption modelling based on the dataset using a set of representative machine learning algorithms.
Our results demonstrate a notable advantage for data-driven models in comparison to the corresponding mathematical models for estimating energy consumption.
arXiv Detail & Related papers (2024-03-26T12:08:05Z) - Data-Driven Probabilistic Energy Consumption Estimation for Battery
Electric Vehicles with Model Uncertainty [1.0787390511207684]
We propose a new driver behaviour-centric EV energy consumption estimation model using probabilistic neural networks with model uncertainty.
By incorporating model uncertainty into neural networks, we have created an ensemble of neural networks using Monte Carlo.
Our approach achieves a mean absolute percentage error of 9.3% and outperforms other existing EV energy consumption models in terms of accuracy.
arXiv Detail & Related papers (2023-07-02T04:30:20Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Counting Carbon: A Survey of Factors Influencing the Emissions of
Machine Learning [77.62876532784759]
Machine learning (ML) requires using energy to carry out computations during the model training process.
The generation of this energy comes with an environmental cost in terms of greenhouse gas emissions, depending on quantity used and the energy source.
We present a survey of the carbon emissions of 95 ML models across time and different tasks in natural language processing and computer vision.
arXiv Detail & Related papers (2023-02-16T18:35:00Z) - Vision in adverse weather: Augmentation using CycleGANs with various
object detectors for robust perception in autonomous racing [70.16043883381677]
In autonomous racing, the weather can change abruptly, causing significant degradation in perception, resulting in ineffective manoeuvres.
In order to improve detection in adverse weather, deep-learning-based models typically require extensive datasets captured in such conditions.
We introduce an approach of using synthesised adverse condition datasets in autonomous racing (generated using CycleGAN) to improve the performance of four out of five state-of-the-art detectors.
arXiv Detail & Related papers (2022-01-10T10:02:40Z) - A Deep Learning Approach for Macroscopic Energy Consumption Prediction
with Microscopic Quality for Electric Vehicles [0.0]
This paper presents a machine learning approach to model the electric consumption of electric vehicles at macroscopic level.
We show that although all internal dynamics that affect energy consumption are masked, it is possible to learn aggregate-level energy consumption values quite accurately.
This model has been deployed and integrated within POLARIS Transportation System Simulation Tool to support real-time behavioral transportation models.
arXiv Detail & Related papers (2021-11-25T01:20:32Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Fed-BEV: A Federated Learning Framework for Modelling Energy Consumption
of Battery Electric Vehicles [5.817576247456001]
Battery electric vehicles (BEVs) exclusively use chemical energy stored in their battery packs for propulsion.
We propose a novel framework for modelling energy consumption for BEVs (Fed-BEV)
More specifically, a group of BEVs involved in the Fed-BEV framework can learn from each other to jointly enhance their energy consumption model.
arXiv Detail & Related papers (2021-08-05T01:56:09Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
We develop a parking lot environment and collect a dataset of human parking maneuvers.
We compare a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline.
Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment
arXiv Detail & Related papers (2020-04-21T20:46:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.