Finding quantum partial assignments by search-to-decision reductions
- URL: http://arxiv.org/abs/2408.03986v1
- Date: Wed, 7 Aug 2024 18:00:00 GMT
- Title: Finding quantum partial assignments by search-to-decision reductions
- Authors: Jordi Weggemans,
- Abstract summary: We show that a quantum algorithm with access to a $mathsfQMA$ oracle can construct $mathsfQMA$ witnesses as quantum states.
We prove that if one is not interested in the quantum witness as a quantum state but only in terms of its partial assignments, then there exists a classical-time algorithm with access to a $mathsfQMA$ oracle.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In computer science, many search problems are reducible to decision problems, which implies that finding a solution is as hard as deciding whether a solution exists. A quantum analogue of search-to-decision reductions would be to ask whether a quantum algorithm with access to a $\mathsf{QMA}$ oracle can construct $\mathsf{QMA}$ witnesses as quantum states. By a result from Irani, Natarajan, Nirkhe, Rao, and Yuen (CCC '22), it is known that this does not hold relative to a quantum oracle, unlike the cases of $\mathsf{NP}$, $\mathsf{MA}$, and $\mathsf{QCMA}$ where search-to-decision relativizes. We prove that if one is not interested in the quantum witness as a quantum state but only in terms of its partial assignments, i.e. the reduced density matrices, then there exists a classical polynomial-time algorithm with access to a $\mathsf{QMA}$ oracle that outputs approximations of the density matrices of a near-optimal quantum witness, for any desired constant locality and inverse polynomial error. Our construction is based on a circuit-to-Hamiltonian mapping that approximately preserves near-optimal $\mathsf{QMA}$ witnesses and a new $\mathsf{QMA}$-complete problem, Low-energy Density Matrix Verification, which is called by the $\mathsf{QMA}$ oracle to adaptively construct approximately consistent density matrices of a low-energy state.
Related papers
- Quantum multi-row iteration algorithm for linear systems with non-square coefficient matrices [7.174256268278207]
We propose a quantum algorithm inspired by the classical multi-row iteration method.
Our algorithm places less demand on the coefficient matrix, making it suitable for solving inconsistent systems.
arXiv Detail & Related papers (2024-09-06T03:32:02Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Quantum sampling algorithms for quantum state preparation and matrix block-encoding [0.0]
We first present an algorithm based on QRS that prepares a quantum state $|psi_frangle propto sumN_x=1 f(x)|xrangle$.
We then adapt QRS techniques to the matrix block-encoding problem and introduce a QRS-based algorithm for block-encoding a given matrix $A = sum_ij A_ij |irangle langle j|$.
arXiv Detail & Related papers (2024-05-19T03:46:11Z) - Quantum State Learning Implies Circuit Lower Bounds [2.2667044928324747]
We establish connections between state tomography, pseudorandomness, quantum state, circuit lower bounds.
We show that even slightly non-trivial quantum state tomography algorithms would lead to new statements about quantum state synthesis.
arXiv Detail & Related papers (2024-05-16T16:46:27Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - On the approximability of random-hypergraph MAX-3-XORSAT problems with quantum algorithms [0.0]
A feature of constraint satisfaction problems in NP is approximation hardness, where in the worst case, finding sufficient-quality approximate solutions is exponentially hard.
For algorithms based on Hamiltonian time evolution, we explore this question through the prototypically hard MAX-3-XORSAT problem class.
We show that, for random hypergraphs in the approximation-hard regime, if we define the energy to be $E = N_mathrmunsat-N_mathrmsat$, spectrally filtered quantum optimization will return states with $E leq q_m.
arXiv Detail & Related papers (2023-12-11T04:15:55Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
We give a comprehensive characterization of the computational power of shallow quantum circuits combined with classical computation.
For some problems, the ability to perform adaptive measurements in a single shallow quantum circuit is more useful than the ability to perform many shallow quantum circuits without adaptive measurements.
arXiv Detail & Related papers (2022-10-12T17:54:02Z) - Quantum search-to-decision reductions and the state synthesis problem [0.4248594146171025]
We show that a quantum algorithm makes queries to a classical decision oracle to output a desired quantum state.
We also show that there exists a quantum-time algorithm that can generate a witness for a $mathsfQMA$ problem up to inverse precision.
We also explore the more general $textitstate synthesis problem$, in which the goal is to efficiently synthesize a target state.
arXiv Detail & Related papers (2021-11-04T16:52:58Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.