論文の概要: Multimodal Gender Fairness in Depression Prediction: Insights on Data from the USA & China
- arxiv url: http://arxiv.org/abs/2408.04026v1
- Date: Wed, 7 Aug 2024 18:19:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 17:29:51.391759
- Title: Multimodal Gender Fairness in Depression Prediction: Insights on Data from the USA & China
- Title(参考訳): うつ病予測におけるマルチモーダルジェンダーフェアネス:米国と中国のデータを中心に
- Authors: Joseph Cameron, Jiaee Cheong, Micol Spitale, Hatice Gunes,
- Abstract要約: 社会エージェントやロボットは、幸福な環境にますます利用されている。
主な課題は、これらのエージェントとロボットが通常、個人の精神的幸福を検知し分析するために機械学習(ML)アルゴリズムに依存することである。
MLアルゴリズムにおけるバイアスと公平性の問題は、ますます懸念の源となっている。
- 参考スコア(独自算出の注目度): 9.796661021374618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social agents and robots are increasingly being used in wellbeing settings. However, a key challenge is that these agents and robots typically rely on machine learning (ML) algorithms to detect and analyse an individual's mental wellbeing. The problem of bias and fairness in ML algorithms is becoming an increasingly greater source of concern. In concurrence, existing literature has also indicated that mental health conditions can manifest differently across genders and cultures. We hypothesise that the representation of features (acoustic, textual, and visual) and their inter-modal relations would vary among subjects from different cultures and genders, thus impacting the performance and fairness of various ML models. We present the very first evaluation of multimodal gender fairness in depression manifestation by undertaking a study on two different datasets from the USA and China. We undertake thorough statistical and ML experimentation and repeat the experiments for several different algorithms to ensure that the results are not algorithm-dependent. Our findings indicate that though there are differences between both datasets, it is not conclusive whether this is due to the difference in depression manifestation as hypothesised or other external factors such as differences in data collection methodology. Our findings further motivate a call for a more consistent and culturally aware data collection process in order to address the problem of ML bias in depression detection and to promote the development of fairer agents and robots for wellbeing.
- Abstract(参考訳): 社会エージェントやロボットは、幸福な環境にますます利用されている。
しかし、重要な課題は、これらのエージェントとロボットが通常、個人の精神的健康を検知し分析するために機械学習(ML)アルゴリズムに依存していることである。
MLアルゴリズムにおけるバイアスと公平性の問題は、ますます懸念の源となっている。
既存の文献では、精神的な健康状態が性別や文化によって異なることが示されている。
特徴(音響的,テキスト的,視覚的)の表現とモーダル間の関係は,異なる文化や性別の被験者によって異なるため,様々なMLモデルの性能と公平性に影響を与えると仮定する。
本研究は、米国と中国の2つの異なるデータセットを用いて、抑うつ症状におけるマルチモーダル性フェアネスを初めて評価するものである。
統計的および機械学習の実験を徹底的に行い、いくつかの異なるアルゴリズムの実験を繰り返して、結果がアルゴリズムに依存していないことを保証する。
以上の結果から,両データセットの差はあるものの,仮説によるうつ症状の相違や,データ収集手法の相違など外部要因の相違が原因かは明らかでない。
さらに, 抑うつ検出におけるMLバイアスの問題に対処し, ウェルビーイングのための公平なエージェントやロボットの開発を促進するため, より一貫性のある, 文化的に意識されたデータ収集プロセスの必要性が示唆された。
関連論文リスト
- "My Kind of Woman": Analysing Gender Stereotypes in AI through The Averageness Theory and EU Law [0.0]
本研究は,社会的ステレオタイプとアルゴリズム決定の相互作用に光を当てて,性別分類システムについて考察する。
認知心理学とフェミニスト法理論を取り入れることで、AIトレーニングに使用されるデータがジェンダーの多様性と公平性をいかに促進するかを検討する。
論文 参考訳(メタデータ) (2024-06-27T20:03:27Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Unveiling Gender Bias in Terms of Profession Across LLMs: Analyzing and
Addressing Sociological Implications [0.0]
この研究は、AI言語モデルにおけるジェンダーバイアスに関する既存の研究を調査し、現在の知識のギャップを特定する。
この結果は,大規模言語モデルのアウトプットに存在する,ジェンダー付き単語関連,言語使用,偏見付き物語に光を当てた。
本稿では,アルゴリズムアプローチやデータ拡張手法など,LSMにおける性別バイアスを低減するための戦略を提案する。
論文 参考訳(メタデータ) (2023-07-18T11:38:45Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Stable Bias: Analyzing Societal Representations in Diffusion Models [72.27121528451528]
本稿では,テキスト・ツー・イメージ(TTI)システムにおける社会的バイアスを探索する新しい手法を提案する。
我々のアプローチは、プロンプト内の性別や民族のマーカーを列挙して生成された画像の変動を特徴づけることに依存している。
我々はこの手法を利用して3つのTTIシステムによって生成された画像を分析し、そのアウトプットが米国の労働人口層と相関しているのに対して、彼らは常に異なる範囲において、限界化されたアイデンティティを低く表現している。
論文 参考訳(メタデータ) (2023-03-20T19:32:49Z) - Picking on the Same Person: Does Algorithmic Monoculture lead to Outcome
Homogenization? [90.35044668396591]
機械学習における繰り返しのテーマはアルゴリズムによるモノカルチャーである。同じシステム、またはコンポーネントを共有するシステムは、複数の意思決定者によってデプロイされる。
意思決定者がトレーニングデータや特定のモデルなどのコンポーネントを共有すれば、より均一な結果が得られます。
我々はこの仮説をアルゴリズムフェアネスベンチマークで検証し、トレーニングデータの共有がホモジェナイゼーションを確実に悪化させることを示した。
結果の均質化に関する哲学的分析と社会的な課題を、デプロイされた機械学習システムに含めることに着目して結論付ける。
論文 参考訳(メタデータ) (2022-11-25T09:33:11Z) - Towards Explaining Demographic Bias through the Eyes of Face Recognition
Models [6.889667606945215]
データとアルゴリズムの両方に固有のバイアスは、機械学習(ML)ベースの意思決定システムの公平性を最適以下にする。
我々は、異なる人口集団を処理する際に、顔認識モデルの振る舞いの違いを分析する一連の説明可能性ツールを提供することを目標としている。
我々は、アクティベーションマップに基づく高次統計情報を活用して、FRモデルの行動差を特定の顔領域に関連付ける説明可能性ツールを構築する。
論文 参考訳(メタデータ) (2022-08-29T07:23:06Z) - Locating disparities in machine learning [24.519488484614953]
我々は、ALD(Automatic Location of Disparities)と呼ばれるデータ駆動型フレームワークを提案する。
ALDは、機械学習アルゴリズムにおける格差の特定を目的としている。
合成と実世界の両方のデータセットに基づくALDの有効性を示す。
論文 参考訳(メタデータ) (2022-08-13T16:39:51Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Assessing Demographic Bias Transfer from Dataset to Model: A Case Study
in Facial Expression Recognition [1.5340540198612824]
2つのメトリクスはデータセットの表現バイアスとステレオタイプバイアスに焦点をあて、もう1つはトレーニングされたモデルの残差バイアスに焦点を当てている。
本稿では、一般的なAffectnetデータセットに基づくFER問題に適用することで、メトリクスの有用性を示す。
論文 参考訳(メタデータ) (2022-05-20T09:40:42Z) - Naturalistic Causal Probing for Morpho-Syntax [76.83735391276547]
スペインにおける実世界のデータに対する入力レベルの介入に対する自然主義的戦略を提案する。
提案手法を用いて,共同設立者から文章中の形態・症状の特徴を抽出する。
本研究では,事前学習したモデルから抽出した文脈化表現に対する性別と数字の因果効果を解析するために,本手法を適用した。
論文 参考訳(メタデータ) (2022-05-14T11:47:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。