論文の概要: FDC: Fast KV Dimensionality Compression for Efficient LLM Inference
- arxiv url: http://arxiv.org/abs/2408.04107v3
- Date: Sun, 08 Jun 2025 20:04:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:08.810925
- Title: FDC: Fast KV Dimensionality Compression for Efficient LLM Inference
- Title(参考訳): FDC:効率的なLLM推論のための高速KV次元圧縮
- Authors: Zeyu Zhang, Haiying Shen,
- Abstract要約: FDCは、既存のKV次元圧縮システムであるPaluで発生する減圧オーバーヘッドを排除し、注意時間を短縮する高速なKV次元圧縮システムである。
実験では、FDCはジョブ完了時間(JCT)を最大64%削減し、同じレイテンシで最大1.97倍のスループットを提供する。
最先端の消去法と量子化法がFDCと組み合わせられた場合、Paluと組み合わせた方法と同じような改善がなされる。
- 参考スコア(独自算出の注目度): 11.194752361478567
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In large-language models, memory constraints in the Key-Value Cache (KVC) pose a challenge during inference. In this work, we propose FDC, a fast KV dimensionality compression system that eliminates the decompression overhead incurred in the existing KV dimensionality compression system, Palu, and reduces attention time. Moreover, FDC employs adaptive compression, tailoring KV compression rates across heads and layers based on their contributions to inference to maximize overall compression while maintaining an accuracy loss constraint. Additionally, FDC enhances the attention kernel to balance the uneven workloads caused by the adaptive compression approach to further reduce attention computation latency. Comprehensive experiments demonstrate that compared to Palu, FDC can reduce Job Completion Time (JCT) by up to 64%, and delivers up to 1.97X throughput under the same latency, while maintaining 99% of the accuracy without compression. When state-of-the-art eviction and quantization methods are combined with FDC, they exhibit similar improvements compared to those combined with Palu. We open-sourced the code.
- Abstract(参考訳): 大規模モデルでは、キーバリューキャッシュ(KVC)のメモリ制約は推論中に問題となる。
本研究では,既存のKV次元圧縮システムであるPaluにおける圧縮オーバーヘッドを低減し,注意時間を短縮する高速なKV次元圧縮システムであるFDCを提案する。
さらに、FDCは適応圧縮を採用し、精度損失制約を維持しながら全体の圧縮を最大化するための推論への貢献に基づいて、頭や層間のKV圧縮速度を調整している。
さらに、FDCはアダプティブ圧縮アプローチによる不均一なワークロードのバランスをとるためにアテンションカーネルを強化し、アテンション計算のレイテンシをさらに削減する。
総合的な実験によると、Palluと比較して、FDCはジョブ完了時間(JCT)を最大64%削減し、同じレイテンシで最大1.97倍のスループットを提供すると同時に、圧縮なしで99%の精度を維持することができる。
最先端の消去法と量子化法をFDCと組み合わせると、Paluと組み合わせた方法と同じような改善がなされる。
コードをオープンソースにしました。
関連論文リスト
- DBudgetKV: Dynamic Budget in KV Cache Compression for Ensuring Optimal Performance [125.81664663201282]
我々はDBudgetKVと呼ばれる新しいKVキャッシュ圧縮手法を提案する。
これは、残りのKVキャッシュがフルキャッシュのパフォーマンスにマッチしそうにない場合に、注意に基づくメトリクスを信号として、プルーニングプロセスを停止させる。
提案手法は,メモリ空間を最適化するだけでなく,既存の手法に比べて推論時間を短縮する。
論文 参考訳(メタデータ) (2025-02-24T06:33:39Z) - HACK: Homomorphic Acceleration via Compression of the Key-Value Cache for Disaggregated LLM Inference [24.068304021577358]
Disaggregated Large Language Model (LLM) 推論は、計算集約型プリフィルステージとメモリ集約型デコードステージを分離する。
キーバリュー(KV)データを2つのステージ間で送信することは、特に長いプロンプトにおいてボトルネックとなる可能性がある。
分散LDM推論のためのKVキャッシュ(HACK)の圧縮によるホモモルフィック高速化を提案する。
論文 参考訳(メタデータ) (2025-02-05T20:09:51Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
大規模言語モデル(LLM)では、KVキャッシュのメモリ使用量は推論において重大なボトルネックとなっている。
KVプルーニングやKV量子化を含む主流のKV圧縮法は、主にトークンまたは精度寸法を別々に扱う。
本稿では,KVキャッシュ圧縮におけるトークン精度トレードオフを包括的に検討する。
論文 参考訳(メタデータ) (2024-12-17T09:20:31Z) - EMS: Adaptive Evict-then-Merge Strategy for Head-wise KV Cache Compression Based on Global-Local Importance [44.14919492126948]
メモリオーバーヘッドが重要になるにつれて、KVキャッシュの効率的な圧縮が注目されている。
我々は,これらの制限を克服すると同時に,極端な圧縮比下でのKVキャッシュ圧縮を向上するEMSを提案する。
EMSは最低の難易度を一貫して達成し、256のキャッシュ予算の下でLongBench上の4つのLLMで1.28ポイント以上改善し、Needdle-in-a-Haystackタスクのコンテキスト長の2%未満のキャッシュ予算で95%の検索精度を維持している。
論文 参考訳(メタデータ) (2024-12-11T16:35:13Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - UNComp: Uncertainty-Aware Long-Context Compressor for Efficient Large Language Model Inference [38.11539884622708]
UNCompは、隠れた状態とKVキャッシュの両方を適応的に圧縮する不確実性対応圧縮スキームである。
本手法は,プリフィル段階で1.6倍の高速化を実現し,KVキャッシュを元のサイズの4.74%に削減する。
注目すべきは、ニードル・イン・ア・ヘイスタックのタスクでは、UNCompは元のサイズの9.38%に圧縮された場合でも、フルサイズのKVキャッシュより優れていることである。
論文 参考訳(メタデータ) (2024-10-04T02:32:36Z) - KV-Compress: Paged KV-Cache Compression with Variable Compression Rates per Attention Head [0.8158530638728501]
そこで我々は,PagedAttentionフレームワーク内で連続KVブロックを除去する新しい圧縮手法であるKV-Compressを紹介する。
本手法は,Mistral-7B-Instruct-v0.2およびLlama-3.1-8B-InstructのLongBenchにおける圧縮KVの総数を4倍に減らしながら,最先端の性能を実現する。
Llama-3.1-8B-InstructとLlama-3.1-70B-Instruct-FP8の評価は、圧縮速度を最大8倍まで達成し、性能に悪影響を及ぼすことなく、フルキャッシュ性能の90%以上を維持しながら、最大64倍まで向上する。
論文 参考訳(メタデータ) (2024-09-30T19:09:13Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - In-Context Former: Lightning-fast Compressing Context for Large Language Model [48.831304302467004]
本稿では,Transformer-based large language model (LLM) の長期入力コンテキストを圧縮する手法を提案する。
我々は,単語の埋め込みから情報を集めるために,クロスアテンション機構と少数の学習可能なダイジェストトークンを使用する。
実験の結果, 圧縮時のベースライン浮動小数点演算の1/32しか必要とせず, 処理速度を68倍から112倍に向上することがわかった。
論文 参考訳(メタデータ) (2024-06-19T15:14:55Z) - LoCoCo: Dropping In Convolutions for Long Context Compression [77.26610232994508]
本稿では,Long Context Compression(LoCoCo)のための新しいアプローチであるDropping In Convolutionsを提案する。
LoCoCoは、固定サイズキーバリュー(KV)キャッシュのみを使用し、推論と微調整の両方のステージで効率を向上させることができる。
論文 参考訳(メタデータ) (2024-06-08T01:35:11Z) - ZipCache: Accurate and Efficient KV Cache Quantization with Salient Token Identification [19.985314022860432]
KVキャッシュは、再計算を避けるために、以前のトークンからキーと値の状態を格納する。
KVキャッシュ圧縮はトークンの正当性を識別し、重要でないトークンを積極的に圧縮しながら重要な情報を保存する。
LLMの高精度かつ効率的なKVキャッシュ量子化手法ZipCacheを提案する。
論文 参考訳(メタデータ) (2024-05-23T07:37:16Z) - Unlocking Data-free Low-bit Quantization with Matrix Decomposition for KV Cache Compression [87.5604418100301]
キー値(KV)キャッシングは,大規模言語モデルの推論を高速化する重要な手法である。
既存の手法はしばしば精度を損なうか、キャリブレーションのために余分なデータを必要とする。
テンソル分解法に基づく新しいデータフリー低ビット量子化手法である textbfDecoQuant を導入する。
論文 参考訳(メタデータ) (2024-05-21T08:35:10Z) - Activations and Gradients Compression for Model-Parallel Training [85.99744701008802]
モデル並列分散トレーニングセットアップにおけるアクティベーションと勾配の同時圧縮が収束に与える影響について検討する。
グラデーションはアクティベーションよりも軽度な圧縮速度を必要とする。
実験では、TopKでトレーニングされたモデルが、推論中に圧縮も適用された場合にのみ正常に動作することが示されている。
論文 参考訳(メタデータ) (2024-01-15T15:54:54Z) - GraVAC: Adaptive Compression for Communication-Efficient Distributed DL
Training [0.0]
分散データ並列(DDP)トレーニングは、複数のデバイスがデータのサブセットをトレーニングし、アップデートを集約してグローバルに共有するモデルを生成することにより、アプリケーション全体のスループットを向上させる。
GraVACは、モデル進捗を評価し、圧縮に関連する情報損失を評価することで、トレーニング全体を通して圧縮係数を動的に調整するフレームワークである。
静的圧縮係数を使用するのとは対照的に、GraVACはResNet101、VGG16、LSTMのエンドツーエンドのトレーニング時間をそれぞれ4.32x、1.95x、6.67x削減する。
論文 参考訳(メタデータ) (2023-05-20T14:25:17Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
チャネルプルーニングとテンソル分解を結合してCNNモデルを圧縮する協調圧縮方式を提案する。
52.9%のFLOPを削減し、ResNet-50で48.4%のパラメータを削除しました。
論文 参考訳(メタデータ) (2021-05-24T12:07:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。