論文の概要: An Upper Confidence Bound Approach to Estimating the Maximum Mean
- arxiv url: http://arxiv.org/abs/2408.04179v1
- Date: Thu, 8 Aug 2024 02:53:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 16:50:38.488671
- Title: An Upper Confidence Bound Approach to Estimating the Maximum Mean
- Title(参考訳): 最大値推定のための上層信頼境界法
- Authors: Zhang Kun, Liu Guangwu, Shi Wen,
- Abstract要約: 本研究では, 上限値の最大値の推定について, 上限値 (UCB) を用いて検討した。
両推定器の強い一貫性、平均二乗誤差、中央極限定理(CLT)を含む統計的保証を確立する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Estimating the maximum mean finds a variety of applications in practice. In this paper, we study estimation of the maximum mean using an upper confidence bound (UCB) approach where the sampling budget is adaptively allocated to one of the systems. We study in depth the existing grand average (GA) estimator, and propose a new largest-size average (LSA) estimator. Specifically, we establish statistical guarantees, including strong consistency, asymptotic mean squared errors, and central limit theorems (CLTs) for both estimators, which are new to the literature. We show that LSA is preferable over GA, as the bias of the former decays at a rate much faster than that of the latter when sample size increases. By using the CLTs, we further construct asymptotically valid confidence intervals for the maximum mean, and propose a single hypothesis test for a multiple comparison problem with application to clinical trials. Statistical efficiency of the resulting point and interval estimates and the proposed single hypothesis test is demonstrated via numerical examples.
- Abstract(参考訳): 最大平均を推定すると、実際には様々な応用が見つかる。
本稿では,サンプリング予算を1つのシステムに適応的に割り当てる上信頼度境界(UCB)アプローチを用いて,最大値の推定について検討する。
本研究では,既存の大平均 (GA) 推定器について深く検討し,新たな大平均 (LSA) 推定器を提案する。
具体的には、強い一貫性、漸近平均二乗誤差、両推定器の中央極限定理(CLT)を含む統計的保証を確立する。
サンプルサイズが大きくなると, 前者のバイアスは後者よりもはるかに速い速度で崩壊するので, LSAの方がGAよりも好ましいことを示す。
CLTを用いて、最大平均に対する漸近的に有効な信頼区間を構築し、多重比較問題に対する単一仮説テストと臨床試験への応用を提案する。
結果のポイントとインターバル推定の統計的効率と,提案した単仮説テストの数値例による検証を行った。
関連論文リスト
- HAVER: Instance-Dependent Error Bounds for Maximum Mean Estimation and Applications to Q-Learning [11.026588768210601]
そこで本研究では,K$分布中の最大平均値の固有値をサンプルを用いて推定する問題について検討する。
HAVERと呼ばれる新しいアルゴリズムを提案し,その平均二乗誤差を解析する。
論文 参考訳(メタデータ) (2024-11-01T07:05:11Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
時間差差(TD)学習は、おそらく政策評価に最も広く使用されるものであり、この目的の自然な枠組みとして機能する。
本稿では,Polyak-Ruppert平均化と線形関数近似によるTD学習の整合性について検討し,既存の結果よりも3つの重要な改善点を得た。
論文 参考訳(メタデータ) (2024-10-21T15:34:44Z) - Statistical Inference in Tensor Completion: Optimal Uncertainty Quantification and Statistical-to-Computational Gaps [7.174572371800217]
本稿では,不完全かつノイズの多い観測を用いて,テンソル線形形式を統計的に推定する簡易かつ効率的な手法を提案する。
これは、信頼区間の構築、ヘテロスケダティックおよびサブ指数雑音下での推論、同時テストなど、様々な統計的推論タスクに適している。
論文 参考訳(メタデータ) (2024-10-15T03:09:52Z) - Semiparametric Efficient Inference in Adaptive Experiments [29.43493007296859]
本研究では, 治療や管理に対する課題の割り当てを規定する政策が, 時間とともに変化しうる連続的な実験において, 平均治療効果の効率的な推定の問題点を考察する。
まず、Adaptive Augmented Inverse-Probability Weighted estimator に対する中心極限定理について述べる。
次に、従来の手法よりもかなり厳密な確率性および漸近的信頼シーケンスの両方を導出した逐次推論設定を検討する。
論文 参考訳(メタデータ) (2023-11-30T06:25:06Z) - Overlapping Batch Confidence Intervals on Statistical Functionals
Constructed from Time Series: Application to Quantiles, Optimization, and
Estimation [5.068678962285631]
定常時系列データを用いて構築した統計関数に対する信頼区間手順を提案する。
OBx制限は、バッチのサイズと重複の程度によってパラメータ化されたWienerプロセスの特定の機能であり、依存を特徴づけるための必須の機械を形成する。
論文 参考訳(メタデータ) (2023-07-17T16:21:48Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Minimax Off-Policy Evaluation for Multi-Armed Bandits [58.7013651350436]
有界報酬を用いたマルチアームバンディットモデルにおけるオフポリシー評価の問題点について検討する。
3つの設定でミニマックスレート・オプティマティックな手順を開発。
論文 参考訳(メタデータ) (2021-01-19T18:55:29Z) - Maximum Entropy competes with Maximum Likelihood [0.0]
Max Entropy(MAXENT)メソッドは、理論的および応用機械学習に多数のアプリケーションを持っています。
MAXENTはスパースデータレジームに適用されるが、特定の種類の事前情報を必要とする。
特にMAXENTは、推定された乱数とその確率の間に先行したランク相関がある限り、最適に正規化されたMLを上回ることができる。
論文 参考訳(メタデータ) (2020-12-17T07:44:22Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Kullback-Leibler の同一および独立に分布するサンプルからの発散は、様々な領域において重要な問題である。
単純で効果的な推定器の1つは、これらのサンプル間の近辺 k に基づいている。
論文 参考訳(メタデータ) (2020-02-26T16:37:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。