論文の概要: Uncertainty-Aware Crime Prediction With Spatial Temporal Multivariate Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2408.04193v1
- Date: Thu, 8 Aug 2024 03:25:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 16:50:38.474124
- Title: Uncertainty-Aware Crime Prediction With Spatial Temporal Multivariate Graph Neural Networks
- Title(参考訳): 時空間多変グラフニューラルネットワークによる不確実性を考慮した犯罪予測
- Authors: Zepu Wang, Xiaobo Ma, Huajie Yang, Weimin Lvu, Peng Sun, Sharath Chandra Guntuku,
- Abstract要約: 犯罪事件は、特に小さな地域や特定の期間内では、まばらである。
伝統的な時空間深層学習モデルは、しばしばこの空間性に苦しむ。
時空間多変量ゼロ拡張負二項グラフニューラルネットワーク(STMGNN-ZINB)という新しいアプローチを導入する。
- 参考スコア(独自算出の注目度): 12.027484258239824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Crime forecasting is a critical component of urban analysis and essential for stabilizing society today. Unlike other time series forecasting problems, crime incidents are sparse, particularly in small regions and within specific time periods. Traditional spatial-temporal deep learning models often struggle with this sparsity, as they typically cannot effectively handle the non-Gaussian nature of crime data, which is characterized by numerous zeros and over-dispersed patterns. To address these challenges, we introduce a novel approach termed Spatial Temporal Multivariate Zero-Inflated Negative Binomial Graph Neural Networks (STMGNN-ZINB). This framework leverages diffusion and convolution networks to analyze spatial, temporal, and multivariate correlations, enabling the parameterization of probabilistic distributions of crime incidents. By incorporating a Zero-Inflated Negative Binomial model, STMGNN-ZINB effectively manages the sparse nature of crime data, enhancing prediction accuracy and the precision of confidence intervals. Our evaluation on real-world datasets confirms that STMGNN-ZINB outperforms existing models, providing a more reliable tool for predicting and understanding crime dynamics.
- Abstract(参考訳): 犯罪予測は都市分析の重要な要素であり、現代社会の安定化に不可欠である。
他の時系列の予測問題とは異なり、犯罪事件は特に小さな地域や特定の時間内では少ない。
伝統的な時空間深層学習モデルは、多くのゼロと過分散パターンを特徴とする非ガウス的な犯罪データの性質を効果的に扱えないため、この空間性に苦しむことが多い。
これらの課題に対処するために,時空間多変量ゼロ拡張負二項グラフニューラルネットワーク (STMGNN-ZINB) という新しいアプローチを導入する。
この枠組みは拡散・畳み込みネットワークを利用して空間的・時間的・多変量相関を解析し、犯罪事件の確率分布のパラメータ化を可能にする。
ゼロ膨張負二項モデルを導入することにより、STMGNN-ZINBは犯罪データのスパース性を効果的に管理し、予測精度と信頼区間の精度を高める。
実世界のデータセットに対する評価では、STMGNN-ZINBが既存のモデルより優れており、犯罪力学を予測し理解するための信頼性の高いツールを提供する。
関連論文リスト
- SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal Prediction with Graph Neural Networks [17.994971799054213]
既存のディープラーニングは主に予測に焦点を当てており、そのような予測に固有の不確実性を見下ろしている。
本稿では,ゼロ値と非ゼロ値の両方の不確実性を校正する,ポストホックな時空間AUCフレームワークを提案する。
具体的には,スパーク交通事故と都市犯罪予測誤差を20%低減する実験を行った。
論文 参考訳(メタデータ) (2024-09-13T12:20:02Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Uncertainty Quantification of Sparse Travel Demand Prediction with
Spatial-Temporal Graph Neural Networks [4.488583779590991]
本研究では,空間的ゼロインフレーション型負二項グラフニューラルネットワーク(STZINB-GNN)を開発し,スパース走行需要の不確かさを定量化する。
拡散と時間的畳み込みネットワークを用いて空間的および時間的相関を解析し、それから融合して旅行需要の確率分布をパラメータ化する。
その結果,特に時空間分解能が高い場合,ベンチマークモデルよりもSTZINB-GNNの方が優れていることが示された。
論文 参考訳(メタデータ) (2022-08-11T16:21:10Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Multi-head Temporal Attention-Augmented Bilinear Network for Financial
time series prediction [77.57991021445959]
本稿では,時間的注意と多面的注意の考え方に基づいて,ニューラルネットワークの能力を拡張するニューラルネットワーク層を提案する。
本手法の有効性を,大規模書籍市場データを用いて検証した。
論文 参考訳(メタデータ) (2022-01-14T14:02:19Z) - Spatial-Temporal Sequential Hypergraph Network for Crime Prediction [56.41899180029119]
本稿では,複合犯罪の時空間パターンを包括的に符号化する時空間逐次ハイパーグラフネットワーク(ST-SHN)を提案する。
特に、長距離及びグローバルなコンテキスト下での時空間力学を扱うために、グラフ構造化されたメッセージパッシングアーキテクチャを設計する。
提案するST-SHNフレームワークは予測性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-01-07T12:46:50Z) - Spatially Focused Attack against Spatiotemporal Graph Neural Networks [8.665638585791235]
深時空間グラフニューラルネットワーク(GNN)は,トラフィック予測アプリケーションにおいて大きな成功を収めている。
GNNが現実世界の予測アプリケーションに脆弱性がある場合、ハッカーは簡単に結果を操作でき、交通渋滞や都市規模の破壊を引き起こす。
論文 参考訳(メタデータ) (2021-09-10T01:31:53Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
古典的な統計モデルの多くは、時系列データに存在する複雑さと高い非線形性を扱うのに不足することが多い。
本研究では,時系列データを非線形状態空間モデルからのランダムな実現とみなす。
粒子流は, 複雑で高次元的な設定において極めて有効であることを示すため, 状態の後方分布を近似するツールとして用いられる。
論文 参考訳(メタデータ) (2021-06-10T21:49:23Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
グラフニューラルネットワーク(GNN)は、グラフおよびリレーショナルデータにディープネットワークアーキテクチャを適用する手段として登場した。
本論文では,既存の作業に基づいて,GNN近傍サンプリングをマルチアームバンディット問題として扱う。
そこで本研究では,分散を低減し,不安定かつ非限定的な支払いを回避すべく設計されたバイアスをある程度導入した報酬関数を提案する。
論文 参考訳(メタデータ) (2021-03-01T15:55:58Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。