InstantStyleGaussian: Efficient Art Style Transfer with 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2408.04249v2
- Date: Mon, 26 Aug 2024 10:57:15 GMT
- Title: InstantStyleGaussian: Efficient Art Style Transfer with 3D Gaussian Splatting
- Authors: Xin-Yi Yu, Jun-Xin Yu, Li-Bo Zhou, Yan Wei, Lin-Lin Ou,
- Abstract summary: We present InstantStyleGaussian, an innovative 3D style transfer method based on the 3D Gaussian Splatting (3DGS) scene representation.
By inputting a target-style image, it quickly generates new 3D GS scenes.
- Score: 1.495965529797126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present InstantStyleGaussian, an innovative 3D style transfer method based on the 3D Gaussian Splatting (3DGS) scene representation. By inputting a target-style image, it quickly generates new 3D GS scenes. Our method operates on pre-reconstructed GS scenes, combining diffusion models with an improved iterative dataset update strategy. It utilizes diffusion models to generate target style images, adds these new images to the training dataset, and uses this dataset to iteratively update and optimize the GS scenes, significantly accelerating the style editing process while ensuring the quality of the generated scenes. Extensive experimental results demonstrate that our method ensures high-quality stylized scenes while offering significant advantages in style transfer speed and consistency.
Related papers
- WaSt-3D: Wasserstein-2 Distance for Scene-to-Scene Stylization on 3D Gaussians [37.139479729087896]
We develop a new style transfer method for 3D scenes called WaSt-3D.
It faithfully transfers details from style scenes to the content scene without requiring any training.
WaSt-3D consistently delivers results across diverse content and style scenes without necessitating any training.
arXiv Detail & Related papers (2024-09-26T15:02:50Z) - G-Style: Stylized Gaussian Splatting [5.363168481735954]
We introduce G-Style, a novel algorithm designed to transfer the style of an image onto a 3D scene represented using Gaussian Splatting.
G-Style generates high-quality stylizations within just a few minutes, outperforming existing methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2024-08-28T10:43:42Z) - StyleSplat: 3D Object Style Transfer with Gaussian Splatting [0.3374875022248866]
Style transfer can enhance 3D assets with diverse artistic styles, transforming creative expression.
We introduce StyleSplat, a method for stylizing 3D objects in scenes represented by 3D Gaussians from reference style images.
We demonstrate its effectiveness across various 3D scenes and styles, showcasing enhanced control and customization in 3D creation.
arXiv Detail & Related papers (2024-07-12T17:55:08Z) - SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians [2.2369578015657954]
Implicit neural representation methods have shown impressive advancements in learning 3D scenes from unstructured in-the-wild photo collections.
We introduce a new mechanism to train transient Gaussians to handle the presence of scene occluders in an unsupervised manner.
arXiv Detail & Related papers (2024-03-15T16:00:04Z) - StyleGaussian: Instant 3D Style Transfer with Gaussian Splatting [141.05924680451804]
StyleGaussian is a novel 3D style transfer technique.
It allows instant transfer of any image's style to a 3D scene at 10 frames per second (fps)
arXiv Detail & Related papers (2024-03-12T16:44:52Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGS relies heavily on the point cloud produced by Structure-from-Motion (SfM) techniques.
We propose a novel method that applies a progressive propagation strategy to guide the densification of the 3D Gaussians.
Our method significantly surpasses 3DGS on the dataset, exhibiting an improvement of 1.15dB in terms of PSNR.
arXiv Detail & Related papers (2024-02-22T16:00:20Z) - GaussianStyle: Gaussian Head Avatar via StyleGAN [64.85782838199427]
We propose a novel framework that integrates the volumetric strengths of 3DGS with the powerful implicit representation of StyleGAN.
We show that our method achieves state-of-the-art performance in reenactment, novel view synthesis, and animation.
arXiv Detail & Related papers (2024-02-01T18:14:42Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
We propose DreamGaussian, a novel 3D content generation framework that achieves both efficiency and quality simultaneously.
Our key insight is to design a generative 3D Gaussian Splatting model with companioned mesh extraction and texture refinement in UV space.
In contrast to the occupancy pruning used in Neural Radiance Fields, we demonstrate that the progressive densification of 3D Gaussians converges significantly faster for 3D generative tasks.
arXiv Detail & Related papers (2023-09-28T17:55:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.