論文の概要: AI-Driven Chatbot for Intrusion Detection in Edge Networks: Enhancing Cybersecurity with Ethical User Consent
- arxiv url: http://arxiv.org/abs/2408.04281v1
- Date: Thu, 8 Aug 2024 07:39:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 16:17:56.681968
- Title: AI-Driven Chatbot for Intrusion Detection in Edge Networks: Enhancing Cybersecurity with Ethical User Consent
- Title(参考訳): エッジネットワークにおける侵入検知のためのAI駆動チャットボット:倫理的ユーザコンテンツによるサイバーセキュリティの強化
- Authors: Mugheez Asif, Abdul Manan, Abdul Moiz ur Rehman, Mamoona Naveed Asghar, Muhammad Umair,
- Abstract要約: 本稿では,侵入検知に特化してエッジネットワーク内のセキュリティを高めるアーキテクチャを提案する。
Raspberry Piモジュールが管理するエッジネットワークを用いてネットワーク環境をセキュアにすることで、機密データを保護し、安全な職場を維持することを目指している。
- 参考スコア(独自算出の注目度): 1.3643061988716354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In today's contemporary digital landscape, chatbots have become indispensable tools across various sectors, streamlining customer service, providing personal assistance, automating routine tasks, and offering health advice. However, their potential remains underexplored in the realm of network security, particularly for intrusion detection. To bridge this gap, we propose an architecture chatbot specifically designed to enhance security within edge networks specifically for intrusion detection. Leveraging advanced machine learning algorithms, this chatbot will monitor network traffic to identify and mitigate potential intrusions. By securing the network environment using an edge network managed by a Raspberry Pi module and ensuring ethical user consent promoting transparency and trust, this innovative solution aims to safeguard sensitive data and maintain a secure workplace, thereby addressing the growing need for robust network security measures in the digital age.
- Abstract(参考訳): 今日の現代のデジタルランドスケープでは、チャットボットはさまざまな分野において欠かせないツールとなり、カスタマーサービスの合理化、個人支援の提供、ルーチンタスクの自動化、健康アドバイスの提供が進められている。
しかし、ネットワークセキュリティ、特に侵入検知の分野では、その可能性はまだ探索されていない。
このギャップを埋めるために,侵入検出に特化したエッジネットワーク内のセキュリティ向上を目的としたアーキテクチャチャットボットを提案する。
高度な機械学習アルゴリズムを活用して、このチャットボットはネットワークトラフィックを監視し、潜在的な侵入を検知し軽減する。
Raspberry Piモジュールが管理するエッジネットワークを使用してネットワーク環境を確保し、透明性と信頼を促進する倫理的ユーザの同意を確保することにより、この革新的なソリューションは、機密データを保護し、安全な職場を維持することを目的としており、デジタル時代の堅牢なネットワークセキュリティ対策の必要性が高まっている。
関連論文リスト
- Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - BreachSeek: A Multi-Agent Automated Penetration Tester [0.0]
BreachSeekはAI駆動のマルチエージェントソフトウェアプラットフォームで、人間の介入なしに脆弱性を特定し、悪用する。
予備評価では、BreachSeekはローカルネットワーク内の悪用可能なマシンの脆弱性をうまく利用した。
今後の開発は、その能力を拡大し、サイバーセキュリティの専門家にとって欠かせないツールとして位置づけることを目指している。
論文 参考訳(メタデータ) (2024-08-31T19:15:38Z) - A Security Assessment tool for Quantum Threat Analysis [34.94301200620856]
量子コンピューティングの急速な進歩は、セキュアな通信、デジタル認証、情報暗号化に使われる多くの現在のセキュリティアルゴリズムに重大な脅威をもたらす。
十分に強力な量子コンピュータは、これらのアルゴリズムの脆弱性を悪用し、安全でないトランジットでデータをレンダリングする可能性がある。
この研究は、企業のための量子アセスメントツールを開発し、セキュリティプロトコルをポスト量子世界へ移行するための適切なレコメンデーションを提供する。
論文 参考訳(メタデータ) (2024-07-18T13:58:34Z) - A Survey on the Application of Generative Adversarial Networks in Cybersecurity: Prospective, Direction and Open Research Scopes [1.3631461603291568]
GAN(Generative Adversarial Networks)は、常に変化するセキュリティ問題に対処する強力なソリューションとして登場した。
本研究は, サイバーセキュリティの防衛強化において, GANを的確に捉えた深層学習モデルの重要性について検討した。
焦点は、これらのドメインにおけるサイバーセキュリティの防御を強化するために、GANがいかに影響力のあるツールになり得るかを調べることである。
論文 参考訳(メタデータ) (2024-07-11T19:51:48Z) - Navigating the road to automotive cybersecurity compliance [39.79758414095764]
自動車業界は、車両とデータの両方を潜在的な脅威から保護するために、堅牢なサイバーセキュリティ対策を採用することを余儀なくされている。
自動車のサイバーセキュリティの未来は、先進的な保護措置と、すべての利害関係者の協力的努力の継続的な発展にある。
論文 参考訳(メタデータ) (2024-06-29T16:07:48Z) - Distributed Threat Intelligence at the Edge Devices: A Large Language Model-Driven Approach [0.0]
エッジデバイス上の分散脅威インテリジェンスは、リソース制約されたエッジデバイス上でのサイバーセキュリティを強化するための有望なパラダイムである。
このアプローチでは、エッジデバイスに直接軽量機械学習モデルをデプロイして、ネットワークトラフィックやシステムログなどのローカルデータストリームをリアルタイムで分析する。
提案するフレームワークは,ネットワークからエッジデバイスを分離することで,サイバー脅威の検出と緩和において,より優れたセキュリティを提供することにより,エッジコンピューティングのセキュリティを向上させることができる。
論文 参考訳(メタデータ) (2024-05-14T16:40:37Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Deep Learning Algorithm for Threat Detection in Hackers Forum (Deep Web) [0.0]
深層学習アルゴリズムLong Short-Term Memory (LSTM) を用いたサイバー脅威検出のための新しい手法を提案する。
当社のモデルは,サイバー攻撃前に,デジタル通信の確保や脆弱性の発見において,組織によって容易に展開できる。
論文 参考訳(メタデータ) (2022-02-03T07:49:44Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - Darknet Traffic Big-Data Analysis and Network Management to Real-Time
Automating the Malicious Intent Detection Process by a Weight Agnostic Neural
Networks Framework [0.0]
悪意の検出プロセスをリアルタイムに自動化する新しいダークネットトラフィック解析とネットワーク管理フレームワークを提案する。
ネットワークトラフィック分析、マルウェアトラフィックの復号化、リアルタイムの暗号化トラフィック識別のための、効果的で正確な計算知能ツールである。
論文 参考訳(メタデータ) (2021-02-16T19:03:25Z) - Certifiable Robustness to Adversarial State Uncertainty in Deep
Reinforcement Learning [40.989393438716476]
ディープニューラルネットワークベースのシステムは、現在では多くのロボティクスタスクにおいて最先端のシステムとなっているが、ネットワークの堅牢性に関する公式な保証なしに、安全クリティカルドメインへの適用は危険なままである。
センサー入力に対する小さな摂動は、しばしばネットワークベースの決定を変えるのに十分である。
この研究は、認証された敵対的ロバスト性の研究を活用して、深い強化学習アルゴリズムのためのオンラインロバストを開発する。
論文 参考訳(メタデータ) (2020-04-11T21:36:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。