Efficient and Accurate Pneumonia Detection Using a Novel Multi-Scale Transformer Approach
- URL: http://arxiv.org/abs/2408.04290v3
- Date: Sun, 26 Jan 2025 17:04:30 GMT
- Title: Efficient and Accurate Pneumonia Detection Using a Novel Multi-Scale Transformer Approach
- Authors: Alireza Saber, Pouria Parhami, Alimohammad Siahkarzadeh, Mansoor Fateh, Amirreza Fateh,
- Abstract summary: We propose a novel multi-scale transformer approach for pneumonia detection.
Our method integrates lung segmentation and classification into a unified framework.
Our approach achieves 93.75% accuracy on the "Kermany" dataset and 96.04% accuracy on the "Cohen" dataset.
- Score: 1.2233362977312945
- License:
- Abstract: Pneumonia, a prevalent respiratory infection, remains a leading cause of morbidity and mortality worldwide, particularly among vulnerable populations. Chest X-rays serve as a primary tool for pneumonia detection; however, variations in imaging conditions and subtle visual indicators complicate consistent interpretation. Automated tools can enhance traditional methods by improving diagnostic reliability and supporting clinical decision-making. In this study, we propose a novel multi-scale transformer approach for pneumonia detection that integrates lung segmentation and classification into a unified framework. Our method introduces a lightweight transformer-enhanced TransUNet for precise lung segmentation, achieving a Dice score of 95.68% on the "Chest X-ray Masks and Labels" dataset with fewer parameters than traditional transformers. For classification, we employ pre-trained ResNet models (ResNet-50 and ResNet-101) to extract multi-scale feature maps, which are then processed through a modified transformer module to enhance pneumonia detection. This integration of multi-scale feature extraction and lightweight transformer modules ensures robust performance, making our method suitable for resource-constrained clinical environments. Our approach achieves 93.75% accuracy on the "Kermany" dataset and 96.04% accuracy on the "Cohen" dataset, outperforming existing methods while maintaining computational efficiency. This work demonstrates the potential of multi-scale transformer architectures to improve pneumonia diagnosis, offering a scalable and accurate solution to global healthcare challenges."https://github.com/amirrezafateh/Multi-Scale-Transformer-Pneumonia"
Related papers
- Lung-DETR: Deformable Detection Transformer for Sparse Lung Nodule Anomaly Detection [0.0]
Accurate lung nodule detection for computed tomography (CT) scan imagery is challenging in real-world settings.
We introduce a novel solution leveraging custom data preprocessing and Deformable Detection Transformer (Deformable- DETR)
A 7.5mm Maximum Intensity Projection (MIP) is utilized to combine adjacent lung slices into single images, reducing the slice count and decreasing sparsity.
Our model achieves state-of-the-art performance on the LUNA16 dataset with an F1 score of 94.2% (95.2% recall, 93.3% precision)
arXiv Detail & Related papers (2024-09-08T19:24:38Z) - A novel method to enhance pneumonia detection via a model-level
ensembling of CNN and vision transformer [0.7499722271664147]
Pneumonia remains a leading cause of morbidity and mortality worldwide.
Deep learning has shown immense potential for pneumonia detection from Chest X-ray (CXR) imaging.
We developed a novel model fusing Convolution Neural networks (CNN) and Vision Transformer networks via model-level ensembling.
arXiv Detail & Related papers (2024-01-04T16:58:31Z) - Automatic segmentation of lung findings in CT and application to Long
COVID [38.69538648742266]
S-MEDSeg is a deep learning based approach for accurate segmentation of lung lesions in chest CT images.
S-MEDSeg combines a pre-trained EfficientNet backbone, bidirectional feature pyramid network, and modern network advancements.
arXiv Detail & Related papers (2023-10-13T23:42:43Z) - A Data Augmentation Method and the Embedding Mechanism for Detection and
Classification of Pulmonary Nodules on Small Samples [10.006124666261229]
Two strategies have been introduced: a new data augmentation method and a embedding mechanism.
The result of the 3DVNET model with the augmentation method for pulmonary nodule detection shows that the proposed data augmentation method outperforms the method based on generative adversarial network (GAN) framework.
arXiv Detail & Related papers (2023-03-02T13:58:45Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - An Adaptive and Altruistic PSO-based Deep Feature Selection Method for
Pneumonia Detection from Chest X-Rays [28.656853454251426]
Pneumonia is one of the major reasons for child mortality especially in income-deprived regions of the world.
Computer-aided based diagnosis (CAD) systems can be used in such countries due to their lower operating costs than professional medical experts.
We propose a CAD system for Pneumonia detection from Chest X-rays, using the concepts of deep learning and a meta-heuristic algorithm.
arXiv Detail & Related papers (2022-08-06T18:20:50Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Multi-Slice Net: A novel light weight framework for COVID-19 Diagnosis [38.32234937094937]
This paper presents a novel lightweight COVID-19 diagnosis framework using CT scans.
We use a powerful backbone network as a feature extractor to capture discriminative slice-level features.
These features are aggregated by a lightweight network to obtain a patient level diagnosis.
arXiv Detail & Related papers (2021-08-09T02:46:11Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - Viral Pneumonia Screening on Chest X-ray Images Using Confidence-Aware
Anomaly Detection [86.81773672627406]
Clusters of viral pneumonia during a short period of time may be a harbinger of an outbreak or pandemic, like SARS, MERS, and recent COVID-19.
Rapid and accurate detection of viral pneumonia using chest X-ray can be significantly useful in large-scale screening and epidemic prevention.
Viral pneumonia often have diverse causes and exhibit notably different visual appearances on X-ray images.
arXiv Detail & Related papers (2020-03-27T11:32:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.