Statistical Framework for Clustering MU-MIMO Wireless via Second Order Statistics
- URL: http://arxiv.org/abs/2408.04484v1
- Date: Thu, 8 Aug 2024 14:23:06 GMT
- Title: Statistical Framework for Clustering MU-MIMO Wireless via Second Order Statistics
- Authors: Roberto Pereira, Xavier Mestre,
- Abstract summary: We consider an estimator of the Log-Euclidean distance between multiple sample covariance matrices (SCMs) consistent when the number of samples and the observation size grow unbounded at the same rate.
We develop a statistical framework that allows accurate predictions of the clustering algorithm's performance under realistic conditions.
- Score: 8.195126516665914
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work explores the clustering of wireless users by examining the distances between their channel covariance matrices, which reside on the Riemannian manifold of positive definite matrices. Specifically, we consider an estimator of the Log-Euclidean distance between multiple sample covariance matrices (SCMs) consistent when the number of samples and the observation size grow unbounded at the same rate. Within the context of multi-user MIMO (MU-MIMO) wireless communication systems, we develop a statistical framework that allows to accurate predictions of the clustering algorithm's performance under realistic conditions. Specifically, we present a central limit theorem that establishes the asymptotic Gaussianity of the consistent estimator of the log-Euclidean distance computed over two sample covariance matrices.
Related papers
- Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
We study the theoretical aspects of score-based discrete diffusion models under the Continuous Time Markov Chain (CTMC) framework.
We introduce a discrete-time sampling algorithm in the general state space $[S]d$ that utilizes score estimators at predefined time points.
Our convergence analysis employs a Girsanov-based method and establishes key properties of the discrete score function.
arXiv Detail & Related papers (2024-10-03T09:07:13Z) - Consistent Estimation of a Class of Distances Between Covariance Matrices [7.291687946822539]
We are interested in the family of distances that can be expressed as sums of traces of functions that are separately applied to each covariance matrix.
A statistical analysis of the behavior of this class of distance estimators has also been conducted.
We present a central limit theorem that establishes the Gaussianity of these estimators and provides closed form expressions for the corresponding means and variances.
arXiv Detail & Related papers (2024-09-18T07:36:25Z) - Analysis of a multi-target linear shrinkage covariance estimator [0.0]
We derive the oracle and a textitbona fide multi-target linear shrinkage estimator with exact and empirical mean.
We show empirically that it outperforms other standard estimators in various situations.
arXiv Detail & Related papers (2024-05-30T14:16:32Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
This paper presents a new performance bound for estimation problems where the parameter to estimate lies in a smooth manifold.
It induces a geometry for the parameter manifold, as well as an intrinsic notion of the estimation error measure.
arXiv Detail & Related papers (2023-11-08T15:17:13Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
We introduce a multi-fidelity estimator of covariance matrices that employs the log-Euclidean geometry of the symmetric positive-definite manifold.
We develop an optimal sample allocation scheme that minimizes the mean-squared error of the estimator given a fixed budget.
Evaluations of our approach using data from physical applications demonstrate more accurate metric learning and speedups of more than one order of magnitude compared to benchmarks.
arXiv Detail & Related papers (2023-01-31T16:33:46Z) - Kernel distance measures for time series, random fields and other
structured data [71.61147615789537]
kdiff is a novel kernel-based measure for estimating distances between instances of structured data.
It accounts for both self and cross similarities across the instances and is defined using a lower quantile of the distance distribution.
Some theoretical results are provided for separability conditions using kdiff as a distance measure for clustering and classification problems.
arXiv Detail & Related papers (2021-09-29T22:54:17Z) - Large Non-Stationary Noisy Covariance Matrices: A Cross-Validation
Approach [1.90365714903665]
We introduce a novel covariance estimator that exploits the heteroscedastic nature of financial time series.
By attenuating the noise from both the cross-sectional and time-series dimensions, we empirically demonstrate the superiority of our estimator over competing estimators.
arXiv Detail & Related papers (2020-12-10T15:41:17Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z) - Covariance Estimation for Matrix-valued Data [9.739753590548796]
We propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data.
We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation.
We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
arXiv Detail & Related papers (2020-04-11T02:15:26Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Esting Kullback-Leibler divergence from identical and independently distributed samples is an important problem in various domains.
One simple and effective estimator is based on the k nearest neighbor between these samples.
arXiv Detail & Related papers (2020-02-26T16:37:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.