論文の概要: ParetoTracker: Understanding Population Dynamics in Multi-objective Evolutionary Algorithms through Visual Analytics
- arxiv url: http://arxiv.org/abs/2408.04539v1
- Date: Thu, 8 Aug 2024 15:46:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 15:08:24.443867
- Title: ParetoTracker: Understanding Population Dynamics in Multi-objective Evolutionary Algorithms through Visual Analytics
- Title(参考訳): ParetoTracker:ビジュアル分析による多目的進化アルゴリズムにおける人口動態の理解
- Authors: Zherui Zhang, Fan Yang, Ran Cheng, Yuxin Ma,
- Abstract要約: 本稿では,人口動態の理解と検査を支援するための視覚分析フレームワークを提案する。
このフレームワークは、パフォーマンスメトリクスの全体的なトレンドの調査から、進化的操作のきめ細かい検査に至るまで、ユーザエンゲージメントと探索に役立っている。
このフレームワークの有効性は、広く採用されているベンチマーク最適化問題に焦点をあてたケーススタディと専門家インタビューを通じて実証される。
- 参考スコア(独自算出の注目度): 16.65441551504126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful tools for solving complex optimization problems characterized by multiple, often conflicting, objectives. While advancements have been made in computational efficiency as well as diversity and convergence of solutions, a critical challenge persists: the internal evolutionary mechanisms are opaque to human users. Drawing upon the successes of explainable AI in explaining complex algorithms and models, we argue that the need to understand the underlying evolutionary operators and population dynamics within MOEAs aligns well with a visual analytics paradigm. This paper introduces ParetoTracker, a visual analytics framework designed to support the comprehension and inspection of population dynamics in the evolutionary processes of MOEAs. Informed by preliminary literature review and expert interviews, the framework establishes a multi-level analysis scheme, which caters to user engagement and exploration ranging from examining overall trends in performance metrics to conducting fine-grained inspections of evolutionary operations. In contrast to conventional practices that require manual plotting of solutions for each generation, ParetoTracker facilitates the examination of temporal trends and dynamics across consecutive generations in an integrated visual interface. The effectiveness of the framework is demonstrated through case studies and expert interviews focused on widely adopted benchmark optimization problems.
- Abstract(参考訳): 多目的進化アルゴリズム(MOEA)は、複数の、しばしば矛盾する、目的を特徴とする複雑な最適化問題を解く強力なツールとして登場した。
計算効率とソリューションの多様性と収束が進歩してきたが、重要な課題は、内部の進化メカニズムが人間のユーザにとって不透明であることだ。
複雑なアルゴリズムとモデルを説明するための説明可能なAIの成功に基づいて、MOEAの基盤となる進化的演算子と人口動態を理解する必要性は、ビジュアル分析パラダイムとよく一致している、と我々は主張する。
本稿では,MOEAの進化過程における人口動態の理解と検査を支援する視覚分析フレームワークParetoTrackerを紹介する。
予備的な文献レビューと専門家のインタビューにより、このフレームワークは、ユーザエンゲージメントと探索に焦点をあてるマルチレベル分析スキームを確立し、パフォーマンス指標の全体的な傾向を調べ、進化的操作のきめ細かい検査を行う。
ParetoTrackerは、各世代のソリューションを手動でプロットする必要がある従来のプラクティスとは対照的に、統合されたビジュアルインターフェースにおいて、連続世代にわたる時間的傾向とダイナミクスの検証を容易にする。
このフレームワークの有効性は、広く採用されているベンチマーク最適化問題に焦点をあてたケーススタディと専門家インタビューを通じて実証される。
関連論文リスト
- Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
大きな言語モデル(LLM)と進化的アルゴリズム(EA)は、制限を克服し、最適化をより自動化するための有望な新しいアプローチを提供する。
LLMは最適化戦略の生成、洗練、解釈が可能な動的エージェントとして機能する。
EAは進化作用素を通して、複雑な解空間を効率的に探索する。
論文 参考訳(メタデータ) (2024-10-28T09:04:49Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks [50.75902473813379]
本研究は、そのようなモデルの一般化能力における命令と入力の役割を体系的に検証する包括的評価フレームワークを導入する。
提案フレームワークは,極度の命令摂動に対するマルチモーダルモデルのレジリエンスと,観測的変化に対する脆弱性を明らかにする。
論文 参考訳(メタデータ) (2024-07-04T14:36:49Z) - A Comparative Visual Analytics Framework for Evaluating Evolutionary
Processes in Multi-objective Optimization [7.906582204901926]
EMOアルゴリズムにおける進化過程の探索と比較を可能にする視覚分析フレームワークを提案する。
ベンチマークおよび実世界の多目的最適化問題におけるケーススタディを通じて,本フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-08-10T15:32:46Z) - Multiobjective Evolutionary Component Effect on Algorithm behavior [0.04588028371034406]
パフォーマンス改善につながる最も影響力のあるコンポーネントは何かは不明だ。
この手法を,反復レース (irace) 構成パッケージによって設計された分解(MOEA/D)に基づくチューニング多目的進化アルゴリズムに適用する。
本稿では,検索トラジェクトリ・ネットワーク(STN),人口の多様性,時空の超体積値について,アルゴリズム成分の影響を比較した。
論文 参考訳(メタデータ) (2023-07-31T16:02:56Z) - A Survey on Learnable Evolutionary Algorithms for Scalable
Multiobjective Optimization [0.0]
多目的進化アルゴリズム(MOEA)は、様々な多目的最適化問題(MOP)を解決するために採用されている。
しかし、これらの進歩的に改善されたMOEAは、必ずしも高度にスケーラブルで学習可能な問題解決戦略を備えていない。
異なるシナリオの下では、効果的に解決するための新しい強力なMOEAを設計する必要がある。
MOPをスケールアップするための機械学習技術で自身を操る学習可能なMOEAの研究は、進化計算の分野で広く注目を集めている。
論文 参考訳(メタデータ) (2022-06-23T08:16:01Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - A Variational Information Bottleneck Approach to Multi-Omics Data
Integration [98.6475134630792]
本稿では,不完全な多視点観測のための深い変動情報ボトルネック (IB) 手法を提案する。
本手法は,対象物に関連のある視点内および視点間相互作用に焦点をあてるために,観測された視点の辺縁および結合表現にISBフレームワークを適用した。
実世界のデータセットの実験から、我々の手法はデータ統合から常に利益を得て、最先端のベンチマークより優れています。
論文 参考訳(メタデータ) (2021-02-05T06:05:39Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
機械学習やコンピュータビジョンの分野では、モチベーションやメカニズムが異なるにもかかわらず、複雑な問題の多くは、一連の密接に関連するサブプロトコルを含んでいる。
本稿では,BLO(Bi-Level Optimization)の観点から,これらの複雑な学習と視覚問題を一様に表現する。
次に、値関数に基づく単一レベル再構成を構築し、主流勾配に基づくBLO手法を理解し、定式化するための統一的なアルゴリズムフレームワークを確立する。
論文 参考訳(メタデータ) (2021-01-27T16:20:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。