ParetoTracker: Understanding Population Dynamics in Multi-objective Evolutionary Algorithms through Visual Analytics
- URL: http://arxiv.org/abs/2408.04539v1
- Date: Thu, 8 Aug 2024 15:46:11 GMT
- Title: ParetoTracker: Understanding Population Dynamics in Multi-objective Evolutionary Algorithms through Visual Analytics
- Authors: Zherui Zhang, Fan Yang, Ran Cheng, Yuxin Ma,
- Abstract summary: This paper introduces a visual analytics framework designed to support the comprehension and inspection of population dynamics.
The framework caters to user engagement and exploration ranging from examining overall trends in performance metrics to conducting fine-grained inspections of evolutionary operations.
The effectiveness of the framework is demonstrated through case studies and expert interviews focused on widely adopted benchmark optimization problems.
- Score: 16.65441551504126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-objective evolutionary algorithms (MOEAs) have emerged as powerful tools for solving complex optimization problems characterized by multiple, often conflicting, objectives. While advancements have been made in computational efficiency as well as diversity and convergence of solutions, a critical challenge persists: the internal evolutionary mechanisms are opaque to human users. Drawing upon the successes of explainable AI in explaining complex algorithms and models, we argue that the need to understand the underlying evolutionary operators and population dynamics within MOEAs aligns well with a visual analytics paradigm. This paper introduces ParetoTracker, a visual analytics framework designed to support the comprehension and inspection of population dynamics in the evolutionary processes of MOEAs. Informed by preliminary literature review and expert interviews, the framework establishes a multi-level analysis scheme, which caters to user engagement and exploration ranging from examining overall trends in performance metrics to conducting fine-grained inspections of evolutionary operations. In contrast to conventional practices that require manual plotting of solutions for each generation, ParetoTracker facilitates the examination of temporal trends and dynamics across consecutive generations in an integrated visual interface. The effectiveness of the framework is demonstrated through case studies and expert interviews focused on widely adopted benchmark optimization problems.
Related papers
- Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms [3.833708891059351]
Large Language Models (LLMs) and Evolutionary Algorithms (EAs) offer promising new approach to overcome limitations and make optimization more automated.
LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies.
EAs efficiently explore complex solution spaces through evolutionary operators.
arXiv Detail & Related papers (2024-10-28T09:04:49Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Investigating the Role of Instruction Variety and Task Difficulty in Robotic Manipulation Tasks [50.75902473813379]
This work introduces a comprehensive evaluation framework that systematically examines the role of instructions and inputs in the generalisation abilities of such models.
The proposed framework uncovers the resilience of multimodal models to extreme instruction perturbations and their vulnerability to observational changes.
arXiv Detail & Related papers (2024-07-04T14:36:49Z) - A Comparative Visual Analytics Framework for Evaluating Evolutionary
Processes in Multi-objective Optimization [7.906582204901926]
We present a visual analytics framework that enables the exploration and comparison of evolutionary processes in EMO algorithms.
We demonstrate the effectiveness of our framework through case studies on benchmarking and real-world multi-objective optimization problems.
arXiv Detail & Related papers (2023-08-10T15:32:46Z) - Multiobjective Evolutionary Component Effect on Algorithm behavior [0.04588028371034406]
It is unknown what are the most influential components that lead to performance improvements.
We apply this methodology to a tuned Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) designed by the iterated racing (irace) configuration package.
We compare the impact of the algorithm components in terms of their Search Trajectory Networks (STNs), the diversity of the population, and the anytime hypervolume values.
arXiv Detail & Related papers (2023-07-31T16:02:56Z) - A Survey on Learnable Evolutionary Algorithms for Scalable
Multiobjective Optimization [0.0]
Multiobjective evolutionary algorithms (MOEAs) have been adopted to solve various multiobjective optimization problems (MOPs)
However, these progressively improved MOEAs have not necessarily been equipped with sophisticatedly scalable and learnable problem-solving strategies.
Under different scenarios, it requires divergent thinking to design new powerful MOEAs for solving them effectively.
Research into learnable MOEAs that arm themselves with machine learning techniques for scaling-up MOPs has received extensive attention in the field of evolutionary computation.
arXiv Detail & Related papers (2022-06-23T08:16:01Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - A Variational Information Bottleneck Approach to Multi-Omics Data
Integration [98.6475134630792]
We propose a deep variational information bottleneck (IB) approach for incomplete multi-view observations.
Our method applies the IB framework on marginal and joint representations of the observed views to focus on intra-view and inter-view interactions that are relevant for the target.
Experiments on real-world datasets show that our method consistently achieves gain from data integration and outperforms state-of-the-art benchmarks.
arXiv Detail & Related papers (2021-02-05T06:05:39Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.