Authentication of Metropolitan Quantum Key Distribution Network with
Post-quantum Cryptography
- URL: http://arxiv.org/abs/2106.02432v1
- Date: Fri, 4 Jun 2021 12:15:57 GMT
- Title: Authentication of Metropolitan Quantum Key Distribution Network with
Post-quantum Cryptography
- Authors: Yong-Hua Yang, Pei-Yuan Li, Shi-Zhao Ma, Xiao-Cong Qian, Kai-Yi Zhang,
Liu-Jun Wang, Wan-Li Zhang, Fei Zhou, Shi-Biao Tang, Jia-Yong Wang, Yu Yu,
Qiang Zhang, Jian-Wei Pan
- Abstract summary: The Jinan field metropolitan QKD network comprised of 14 user nodes and 5 optical switching nodes.
The feasibility, effectiveness and stability of the post-quantum cryptography (PQC) algorithm and advantages of replacing trusted relays with optical switching were verified.
- Score: 13.937739507933578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution (QKD) provides information theoretically secures key
exchange requiring authentication of the classic data processing channel via
pre-sharing of symmetric private keys. In previous studies, the lattice-based
post-quantum digital signature algorithm Aigis-Sig, combined with public-key
infrastructure (PKI) was used to achieve high-efficiency quantum security
authentication of QKD, and its advantages in simplifying the MAN network
structure and new user entry were demonstrated. This experiment further
integrates the PQC algorithm into the commercial QKD system, the Jinan field
metropolitan QKD network comprised of 14 user nodes and 5 optical switching
nodes. The feasibility, effectiveness and stability of the post-quantum
cryptography (PQC) algorithm and advantages of replacing trusted relays with
optical switching brought by PQC authentication large-scale metropolitan area
QKD network were verified. QKD with PQC authentication has potential in
quantum-secure communications, specifically in metropolitan QKD networks.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Guarantees on the structure of experimental quantum networks [109.08741987555818]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Optimization of QKD Networks with Classical and Quantum Annealing [0.7827586118586438]
Quantum Key Distribution (QKD) hardware is used in a tier 1 provider network.
The ensemble of QKD systems needs to be able to exchange as many encryption keys.
Redundancy and latency requirements add additional boundary conditions.
arXiv Detail & Related papers (2022-06-28T16:08:12Z) - Authentication of quantum key distribution with post-quantum
cryptography and replay attacks [1.8476815769956565]
Quantum key distribution (QKD) and post-quantum cryptography (PQC) are two cryptographic mechanisms with quantum-resistant security.
We propose two protocols based on PQC to realize the full authentication of QKD data post-processing.
arXiv Detail & Related papers (2022-06-02T17:29:34Z) - An Efficient Routing Protocol for Quantum Key Distribution Networks [9.203625000707856]
Quantum key distribution (QKD) can provide point-to-point information-theoretic secure key services for two connected users.
QOLSR considerably improves quantum key utilization in QKD networks through link-state awareness and path optimization.
arXiv Detail & Related papers (2022-04-29T07:37:45Z) - Optimizing the deployment of quantum key distribution switch-based
networks [0.4643589635376553]
We present a QKD network architecture that provides a significant reduction in the cost of deploying QKD networks by using optical switches.
We demonstrate that the switch-based architecture allows achieving significant resource savings of up to 28%, while the throughput is reduced by 8% only.
arXiv Detail & Related papers (2021-04-09T04:13:04Z) - Experimental Authentication of Quantum Key Distribution with
Post-quantum Cryptography [3.627592297350721]
We experimentally verified the feasibility, efficiency and stability of the PQC algorithm in QKD authentication.
Using PQC authentication we only need to believe the CA is safe, rather than all trusted relays.
arXiv Detail & Related papers (2020-09-10T04:12:07Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.