論文の概要: Enhanced Prototypical Part Network (EPPNet) For Explainable Image Classification Via Prototypes
- arxiv url: http://arxiv.org/abs/2408.04606v1
- Date: Thu, 8 Aug 2024 17:26:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-09 14:48:21.045599
- Title: Enhanced Prototypical Part Network (EPPNet) For Explainable Image Classification Via Prototypes
- Title(参考訳): プロトタイプによる説明可能な画像分類のためのEPPNetの拡張
- Authors: Bhushan Atote, Victor Sanchez,
- Abstract要約: 画像分類のためのEPPNet(Enhanced Prototypeal Part Network)を導入する。
EPPNetは、分類結果を説明するために使用可能な関連するプロトタイプを発見しながら、強力なパフォーマンスを実現している。
CUB-200-2011 データセットによる評価の結果,EPPNet は最先端の xAI ベースの手法よりも優れていた。
- 参考スコア(独自算出の注目度): 16.528373143163275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable Artificial Intelligence (xAI) has the potential to enhance the transparency and trust of AI-based systems. Although accurate predictions can be made using Deep Neural Networks (DNNs), the process used to arrive at such predictions is usually hard to explain. In terms of perceptibly human-friendly representations, such as word phrases in text or super-pixels in images, prototype-based explanations can justify a model's decision. In this work, we introduce a DNN architecture for image classification, the Enhanced Prototypical Part Network (EPPNet), which achieves strong performance while discovering relevant prototypes that can be used to explain the classification results. This is achieved by introducing a novel cluster loss that helps to discover more relevant human-understandable prototypes. We also introduce a faithfulness score to evaluate the explainability of the results based on the discovered prototypes. Our score not only accounts for the relevance of the learned prototypes but also the performance of a model. Our evaluations on the CUB-200-2011 dataset show that the EPPNet outperforms state-of-the-art xAI-based methods, in terms of both classification accuracy and explainability
- Abstract(参考訳): 説明可能な人工知能(xAI)は、AIベースのシステムの透明性と信頼性を高める可能性がある。
正確な予測はDeep Neural Networks (DNN) を使って行うことができるが、そのような予測に到達するためのプロセスは説明が難しい。
テキストのワードフレーズや画像のスーパーピクセルなど、人間に親しみやすい表現に関しては、プロトタイプベースの説明はモデルの判断を正当化することができる。
本研究では,画像分類のためのDNNアーキテクチャであるEPPNetを導入する。
これは、より人間に理解しやすいプロトタイプを見つけるのに役立つ、新しいクラスタロスを導入することで達成される。
また,実験結果の妥当性を評価するための忠実度スコアも導入した。
私たちのスコアは、学習したプロトタイプの妥当性だけでなく、モデルの性能も考慮しています。
CUB-200-2011データセットによる評価では、EPPNetは、分類精度と説明可能性の両方の観点から、最先端のxAIベースの手法より優れていることが示された。
関連論文リスト
- Sparse Prototype Network for Explainable Pedestrian Behavior Prediction [60.80524827122901]
Sparse Prototype Network (SPN) は,歩行者の将来の行動,軌道,ポーズを同時に予測するための説明可能な手法である。
モノセマンティリティとクラスタリングの制約によって規則化されたプロトタイプは、一貫性と人間の理解可能な機能を学ぶ。
論文 参考訳(メタデータ) (2024-10-16T03:33:40Z) - GAProtoNet: A Multi-head Graph Attention-based Prototypical Network for Interpretable Text Classification [1.170190320889319]
GAProtoNetは、新しいホワイトボックスマルチヘッドグラフアテンションベースのプロトタイプネットワークである。
提案手法は,元のブラックボックスLMの精度を犠牲にすることなく,優れた結果が得られる。
プロトタイプクラスタのケーススタディと可視化は,LMを用いて構築したブラックボックスモデルの決定を効率的に説明できることを示す。
論文 参考訳(メタデータ) (2024-09-20T08:15:17Z) - Interpretable Prototype-based Graph Information Bottleneck [22.25047783463307]
本稿では,PGIB(Interpretable Prototype-based Graph Information Bottleneck)と呼ばれる,説明可能なグラフニューラルネットワーク(GNN)の新たなフレームワークを提案する。
PGIBは、情報ボトルネックフレームワークにプロトタイプ学習を組み込んで、モデル予測に重要な入力グラフから重要な部分グラフをプロトタイプに提供する。
定性的分析を含む広範囲な実験により、PGIBは予測性能と説明可能性の両方の観点から最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-10-30T18:16:19Z) - Towards Human-Interpretable Prototypes for Visual Assessment of Image
Classification Models [9.577509224534323]
人間に似た推論プロセスに基づいて、解釈可能な設計のモデルが必要です。
ProtoPNetは、教師なしの方法で視覚的に意味のあるプロトタイプを発見すると主張している。
これらのプロトタイプはまだ明確な説明に向けて長い道のりがある。
論文 参考訳(メタデータ) (2022-11-22T11:01:22Z) - Towards Prototype-Based Self-Explainable Graph Neural Network [37.90997236795843]
本稿では,プロトタイプベースの自己説明可能なGNNを学習し,正確な予測とプロトタイプベースの予測説明を同時に行うという,新たな課題について考察する。
学習したプロトタイプは、テストインスタンスの予測とインスタンスレベルの説明を同時に行うためにも使用される。
論文 参考訳(メタデータ) (2022-10-05T00:47:42Z) - ProtoTEx: Explaining Model Decisions with Prototype Tensors [27.779971257213553]
ProtoTExは、プロトタイプネットワークに基づく新しいホワイトボックスのNLP分類アーキテクチャである。
本稿では,表現的特徴の欠如を特徴とするクラスを効果的に扱う新しいインターリーブ学習アルゴリズムについて述べる。
プロパガンダ検出タスクでは、ProtoTExの精度はBART-largeと一致し、BERT-largeを超える。
論文 参考訳(メタデータ) (2022-04-11T22:08:45Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
AIP(Attribute-Informed Perturbation)の提案により,生データインスタンスの反事実を生成するフレームワークを設計する。
異なる属性を条件とした生成モデルを利用することで、所望のラベルとの反事実を効果的かつ効率的に得ることができる。
実世界のテキストや画像に対する実験結果から, 設計したフレームワークの有効性, サンプル品質, および効率が示された。
論文 参考訳(メタデータ) (2021-01-18T08:37:13Z) - Toward Scalable and Unified Example-based Explanation and Outlier
Detection [128.23117182137418]
我々は,試行錯誤の予測に例ベースの説明を与えることのできる,プロトタイプベースの学生ネットワークのより広範な採用を論じる。
類似カーネル以外のプロトタイプベースのネットワークは,分類精度を損なうことなく,有意義な説明と有望な外乱検出結果が得られることを示す。
論文 参考訳(メタデータ) (2020-11-11T05:58:17Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。