論文の概要: GAProtoNet: A Multi-head Graph Attention-based Prototypical Network for Interpretable Text Classification
- arxiv url: http://arxiv.org/abs/2409.13312v1
- Date: Fri, 20 Sep 2024 08:15:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 07:51:11.305243
- Title: GAProtoNet: A Multi-head Graph Attention-based Prototypical Network for Interpretable Text Classification
- Title(参考訳): GAProtoNet:解釈可能なテキスト分類のためのマルチヘッドグラフアテンションに基づくプロトタイプネットワーク
- Authors: Ximing Wen, Wenjuan Tan, Rosina O. Weber,
- Abstract要約: GAProtoNetは、新しいホワイトボックスマルチヘッドグラフアテンションベースのプロトタイプネットワークである。
提案手法は,元のブラックボックスLMの精度を犠牲にすることなく,優れた結果が得られる。
プロトタイプクラスタのケーススタディと可視化は,LMを用いて構築したブラックボックスモデルの決定を効率的に説明できることを示す。
- 参考スコア(独自算出の注目度): 1.170190320889319
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pretrained transformer-based Language Models (LMs) are well-known for their ability to achieve significant improvement on text classification tasks with their powerful word embeddings, but their black-box nature, which leads to a lack of interpretability, has been a major concern. In this work, we introduce GAProtoNet, a novel white-box Multi-head Graph Attention-based Prototypical Network designed to explain the decisions of text classification models built with LM encoders. In our approach, the input vector and prototypes are regarded as nodes within a graph, and we utilize multi-head graph attention to selectively construct edges between the input node and prototype nodes to learn an interpretable prototypical representation. During inference, the model makes decisions based on a linear combination of activated prototypes weighted by the attention score assigned for each prototype, allowing its choices to be transparently explained by the attention weights and the prototypes projected into the closest matching training examples. Experiments on multiple public datasets show our approach achieves superior results without sacrificing the accuracy of the original black-box LMs. We also compare with four alternative prototypical network variations and our approach achieves the best accuracy and F1 among all. Our case study and visualization of prototype clusters also demonstrate the efficiency in explaining the decisions of black-box models built with LMs.
- Abstract(参考訳): 事前訓練されたトランスフォーマーベース言語モデル(LM)は、強力な単語埋め込みによるテキスト分類タスクの大幅な改善を達成できることでよく知られているが、そのブラックボックスの性質は、解釈可能性の欠如につながっている。
本稿では,LMエンコーダで構築したテキスト分類モデルの決定を記述した,新しいホワイトボックスのマルチヘッドグラフアテンションに基づくプロトタイプネットワークであるGAProtoNetを紹介する。
提案手法では,入力ベクトルとプロトタイプをグラフ内のノードとみなし,入力ノードとプロトタイプノードの間のエッジを選択的に構築し,解釈可能なプロトタイプ表現を学習する。
推測中、モデルは各プロトタイプに割り当てられた注目スコアによって重み付けされた活性型プロトタイプの線形結合に基づいて決定を行い、その選択を注意重みによって透過的に説明し、最も近いマッチングトレーニング例に投影する。
複数の公開データセットを用いた実験により,元のブラックボックスLMの精度を犠牲にすることなく,より優れた結果が得られた。
また,提案手法は4種類のネットワーク変動を比較検討し,F1の精度と精度を比較検討した。
プロトタイプクラスタのケーススタディと可視化は,LMを用いて構築したブラックボックスモデルの決定を効率的に説明できることを示す。
関連論文リスト
- Sparse Prototype Network for Explainable Pedestrian Behavior Prediction [60.80524827122901]
Sparse Prototype Network (SPN) は,歩行者の将来の行動,軌道,ポーズを同時に予測するための説明可能な手法である。
モノセマンティリティとクラスタリングの制約によって規則化されたプロトタイプは、一貫性と人間の理解可能な機能を学ぶ。
論文 参考訳(メタデータ) (2024-10-16T03:33:40Z) - HyperPg -- Prototypical Gaussians on the Hypersphere for Interpretable Deep Learning [2.0599237172837523]
ProtoPNetは、トレーニング画像から既知のプロトタイプ部品を“見た目”で学習し、予測力とケースベースの推論の固有の解釈可能性を組み合わせる。
この研究は、潜在空間の超球面上のガウス分布を利用した新しいプロトタイプ表現であるHyperPgを導入する。
CUB-200-2011とStanford Carsデータセットの実験では、HyperPgNetが他のプロトタイプ学習アーキテクチャより優れていることが示されている。
論文 参考訳(メタデータ) (2024-10-11T15:50:31Z) - Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation [7.372346036256517]
意味的セグメンテーションを解釈可能なものにするための、有望なアプローチとして、プロトタイプ的な部分学習が登場している。
本稿では,多スケール画像表現を利用した意味的セグメンテーションの解釈手法を提案する。
Pascal VOC,Cityscapes,ADE20Kで行った実験により,提案手法はモデルの疎結合性を高め,既存のプロトタイプ手法よりも解釈可能性を高め,非解釈可能なモデルとの性能ギャップを狭めることを示した。
論文 参考訳(メタデータ) (2024-09-14T17:52:59Z) - Enhanced Prototypical Part Network (EPPNet) For Explainable Image Classification Via Prototypes [16.528373143163275]
画像分類のためのEPPNet(Enhanced Prototypeal Part Network)を導入する。
EPPNetは、分類結果を説明するために使用可能な関連するプロトタイプを発見しながら、強力なパフォーマンスを実現している。
CUB-200-2011 データセットによる評価の結果,EPPNet は最先端の xAI ベースの手法よりも優れていた。
論文 参考訳(メタデータ) (2024-08-08T17:26:56Z) - MProto: Multi-Prototype Network with Denoised Optimal Transport for
Distantly Supervised Named Entity Recognition [75.87566793111066]
本稿では,DS-NERタスクのためのMProtoというノイズロスのプロトタイプネットワークを提案する。
MProtoは、各エンティティタイプを複数のプロトタイプで表現し、クラス内の分散を特徴付ける。
不完全なラベリングからノイズを緩和するために,新しい復号化最適輸送(DOT)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T13:02:34Z) - With a Little Help from your own Past: Prototypical Memory Networks for
Image Captioning [47.96387857237473]
我々は、他のトレーニングサンプルを処理しながら得られたアクティベーションに注意を向けるネットワークを考案した。
私たちのメモリは、プロトタイプベクトルの定義を通じて過去のキーと値の分布をモデル化します。
本研究では,エンコーダ・デコーダ変換器の性能を3.7 CIDErポイント向上できることを示す。
論文 参考訳(メタデータ) (2023-08-23T18:53:00Z) - Multimodal Prototype-Enhanced Network for Few-Shot Action Recognition [40.329190454146996]
MultimOdal PRototype-ENhanced Network (MORN)は、ラベルテキストの意味情報をマルチモーダル情報として利用してプロトタイプを強化する。
我々は4つの一般的な数発のアクション認識データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2022-12-09T14:24:39Z) - ProtoTEx: Explaining Model Decisions with Prototype Tensors [27.779971257213553]
ProtoTExは、プロトタイプネットワークに基づく新しいホワイトボックスのNLP分類アーキテクチャである。
本稿では,表現的特徴の欠如を特徴とするクラスを効果的に扱う新しいインターリーブ学習アルゴリズムについて述べる。
プロパガンダ検出タスクでは、ProtoTExの精度はBART-largeと一致し、BERT-largeを超える。
論文 参考訳(メタデータ) (2022-04-11T22:08:45Z) - Rethinking Semantic Segmentation: A Prototype View [126.59244185849838]
学習不可能なプロトタイプをベースとした非パラメトリックセマンティックセマンティックセマンティクスモデルを提案する。
我々のフレームワークは、いくつかのデータセットに対して魅力的な結果をもたらす。
この作業が、現在のデファクトセマンティックセグメンテーションモデル設計を再考することを期待しています。
論文 参考訳(メタデータ) (2022-03-28T21:15:32Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
本稿では,FSSタスクに適合する2つの特徴的コントラスト学習手法を提案する。
第一の考え方は、プロトタイプの特徴空間におけるクラス内距離を減少させながら、クラス間距離を増やすことで、プロトタイプをより差別的にすることである。
提案手法は,PASCAL-5iおよびCOCO-20iデータセット上で,最先端のFSS手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-09T08:14:50Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。