論文の概要: LLMs for Enhanced Agricultural Meteorological Recommendations
- arxiv url: http://arxiv.org/abs/2408.04640v1
- Date: Tue, 30 Jul 2024 18:10:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 04:27:34.318097
- Title: LLMs for Enhanced Agricultural Meteorological Recommendations
- Title(参考訳): 農業気象レコメンデーションのためのLCM
- Authors: Ji-jun Park, Soo-joon Choi,
- Abstract要約: 農業気象学の勧告は、天気予報、土壌条件、作物固有のデータに基づいて、農家に実用的な洞察を提供することによって、作物の生産性と持続可能性を高めるために不可欠である。
本稿では,大規模言語モデル(LLM)を活用した新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Agricultural meteorological recommendations are crucial for enhancing crop productivity and sustainability by providing farmers with actionable insights based on weather forecasts, soil conditions, and crop-specific data. This paper presents a novel approach that leverages large language models (LLMs) and prompt engineering to improve the accuracy and relevance of these recommendations. We designed a multi-round prompt framework to iteratively refine recommendations using updated data and feedback, implemented on ChatGPT, Claude2, and GPT-4. Our method was evaluated against baseline models and a Chain-of-Thought (CoT) approach using manually collected datasets. The results demonstrate significant improvements in accuracy and contextual relevance, with our approach achieving up to 90\% accuracy and high GPT-4 scores. Additional validation through real-world pilot studies further confirmed the practical benefits of our method, highlighting its potential to transform agricultural practices and decision-making.
- Abstract(参考訳): 農業気象学の勧告は、天気予報、土壌条件、作物固有のデータに基づいて、農家に実用的な洞察を提供することによって、作物の生産性と持続可能性を高めるために不可欠である。
本稿では,大規模言語モデル(LLM)を活用した新しい手法を提案する。
そこで我々は,ChatGPT,Claude2,GPT-4上に実装された,更新データとフィードバックを用いてリコメンデーションを反復的に洗練するマルチラウンドプロンプトフレームワークを設計した。
本手法は,手動で収集したデータセットを用いて,ベースラインモデルとChain-of-Thought(CoT)アプローチに対して評価を行った。
その結果,最大90%の精度と高いGPT-4スコアが得られた。
実世界のパイロット研究によるさらなる検証により,本手法の実用的メリットが確認され,農業の実践や意思決定を変革する可能性も浮き彫りにされた。
関連論文リスト
- Precision Soil Quality Analysis Using Transformer-based Data Fusion Strategies: A Systematic Review [6.184871136700834]
本稿では,農業リモートセンシング(RS)におけるトランスフォーマーを用いたデータ融合技術の最近の進歩を概観する。
2022年以降、トランスフォーマーは従来のディープラーニングと機械学習の手法を大きく上回っていることを実証した。
このレビューは、作物の生産性を最適化し、持続可能な農業慣行を確実にする上で、土壌条件の重要性から、特に土壌分析に焦点を当てている。
論文 参考訳(メタデータ) (2024-10-24T01:26:21Z) - Enhancing Agricultural Machinery Management through Advanced LLM Integration [0.7366405857677226]
人工知能の農業実践への統合は、農業における効率性と持続可能性に革命をもたらす可能性がある。
本稿では,大規模言語モデル(LLM),特にGPT-4を活用して,農業機械経営における意思決定プロセスを強化する手法を提案する。
論文 参考訳(メタデータ) (2024-07-30T06:49:55Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - GPT-4 as Evaluator: Evaluating Large Language Models on Pest Management in Agriculture [7.458004824488893]
農業、特に害虫管理における大規模言語モデル(LLM)の適用は、まだ初期段階である。
我々は,OpenAIのGenerative Pre-trained Transformer(GPT)シリーズやGoogleのFLANシリーズなど,LLMsが生み出す害虫管理アドバイスの内容を評価することで,その実現可能性を証明することを目的とした。
我々は, GPT-4 を評価指標として, コヒーレンス, 論理的一貫性, 頻度, 妥当性, 包括性, 露出性について, 生成した内容を評価する革新的な手法を提案した。
論文 参考訳(メタデータ) (2024-03-18T15:08:01Z) - Aligning GPTRec with Beyond-Accuracy Goals with Reinforcement Learning [67.71952251641545]
GPTRecはアイテム・バイ・イテムレコメンデーションのためのTop-Kモデルの代替品である。
GPTRecは,従来のグリーディ・リグレード手法よりも精度とセカンダリ・メトリクスのトレードオフが優れていることを示す。
2つのデータセットに対する実験により、GPTRecのNext-K生成アプローチは、古典的なグリージーな再ランク技術よりも精度と二次メトリクスのトレードオフが優れていることが示された。
論文 参考訳(メタデータ) (2024-03-07T19:47:48Z) - Silkie: Preference Distillation for Large Visual Language Models [56.10697821410489]
本稿では,大型視覚言語モデル(LVLM)の嗜好蒸留について検討する。
まず,AIアノテーションを用いた視覚言語フィードバックデータセットを構築した。
我々は, GPT-4V を用いて, 有用性, 視覚的忠実性, 倫理的考察のアウトプットを評価する。
結果として得られたモデルSilkieは、認知能力と認知能力に関するMMEベンチマークで6.9%と9.5%の相対的な改善を達成している。
論文 参考訳(メタデータ) (2023-12-17T09:44:27Z) - GEO-Bench: Toward Foundation Models for Earth Monitoring [139.77907168809085]
6つの分類と6つのセグメンテーションタスクからなるベンチマークを提案する。
このベンチマークは、さまざまな地球観測タスクの進行の原動力となる。
論文 参考訳(メタデータ) (2023-06-06T16:16:05Z) - Evaluating Digital Agriculture Recommendations with Causal Inference [0.9213852038999553]
本稿では,デジタルツールが農業成績指標に与える影響を実証的に評価するための観察因果推論フレームワークを提案する。
ケーススタディとして,数値気象予測に基づく綿の最適播種時間推薦システムの設計と実装を行った。
バックドア基準を用いて, 播種勧告が収量に与える影響を同定し, 線形回帰, マッチング, 逆確率スコア重み付け, メタラーナーを用いて推定した。
論文 参考訳(メタデータ) (2022-11-30T12:20:08Z) - Evaluating Digital Tools for Sustainable Agriculture using Causal
Inference [0.9213852038999553]
本稿では,デジタルツールが農業成績指標に与える影響を実証的に評価するための観察因果推論フレームワークを提案する。
このように、デジタル農業市場の透明性を高めることで、農家の信頼を高めることができる。
論文 参考訳(メタデータ) (2022-11-06T18:22:17Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Learning from Data to Optimize Control in Precision Farming [77.34726150561087]
特集は、統計的推論、機械学習、精密農業のための最適制御における最新の発展を示す。
衛星の位置決めとナビゲーションとそれに続くInternet-of-Thingsは、リアルタイムで農業プロセスの最適化に使用できる膨大な情報を生成する。
論文 参考訳(メタデータ) (2020-07-07T12:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。