論文の概要: Silkie: Preference Distillation for Large Visual Language Models
- arxiv url: http://arxiv.org/abs/2312.10665v1
- Date: Sun, 17 Dec 2023 09:44:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-19 15:07:16.545439
- Title: Silkie: Preference Distillation for Large Visual Language Models
- Title(参考訳): Silkie: 大規模ビジュアル言語モデルの推奨蒸留
- Authors: Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi Wang, Liang Chen,
Yazheng Yang, Benyou Wang, Lingpeng Kong
- Abstract要約: 本稿では,大型視覚言語モデル(LVLM)の嗜好蒸留について検討する。
まず,AIアノテーションを用いた視覚言語フィードバックデータセットを構築した。
我々は, GPT-4V を用いて, 有用性, 視覚的忠実性, 倫理的考察のアウトプットを評価する。
結果として得られたモデルSilkieは、認知能力と認知能力に関するMMEベンチマークで6.9%と9.5%の相対的な改善を達成している。
- 参考スコア(独自算出の注目度): 56.10697821410489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores preference distillation for large vision language models
(LVLMs), improving their ability to generate helpful and faithful responses
anchoring the visual context. We first build a vision-language feedback
(VLFeedback) dataset utilizing AI annotation. Specifically, responses are
generated by models sampled from 12 LVLMs, conditioned on multi-modal
instructions sourced from various datasets. We adopt GPT-4V to assess the
generated outputs regarding helpfulness, visual faithfulness, and ethical
considerations. Furthermore, the preference supervision is distilled into
Qwen-VL-Chat through the direct preference optimization (DPO) method. The
resulting model Silkie, achieves 6.9% and 9.5% relative improvement on the MME
benchmark regarding the perception and cognition capabilities, respectively.
Silkie also demonstrates reduced hallucination by setting a new
state-of-the-art score of 3.02 on the MMHal-Bench benchmark. Further analysis
shows that DPO with our VLFeedback dataset mainly boosts the fine-grained
perception and complex cognition abilities of LVLMs, leading to more
comprehensive improvements compared to human-annotated preference datasets.
- Abstract(参考訳): 本稿では,大規模視覚言語モデル(LVLM)の嗜好蒸留について検討し,視覚コンテキストに係わる有用で忠実な応答を生成する能力を向上させる。
まず,aiアノテーションを用いた視覚言語フィードバック(vlfeedback)データセットを構築した。
具体的には、12のlvlmからサンプリングされたモデルから応答を生成し、さまざまなデータセットからソースされたマルチモーダル命令を条件とする。
我々はGPT-4Vを用いて、有用性、視覚的忠実性、倫理的考察に関する出力を評価する。
さらに、直接選好最適化(DPO)法により、選好監督をQwen-VL-Chatに蒸留する。
その結果,mmeベンチマークにおいて,知覚能力と認知能力に関して6.9%,9.5%の相対的改善が得られた。
Silkieはまた、MMHal-Benchベンチマークで新しい最先端スコア3.02を設定することで幻覚を減少させる。
さらに分析したところ、我々のVLFeedbackデータセットを用いたDPOは、LVLMの微粒な認識と複雑な認識能力を主に向上させ、人間の注釈付き嗜好データセットと比較してより包括的な改善をもたらすことが示された。
関連論文リスト
- V-DPO: Mitigating Hallucination in Large Vision Language Models via Vision-Guided Direct Preference Optimization [21.248617886995103]
トレーニング時の視覚的コンテキスト学習を改善するために,視覚誘導直接選択最適化(V-DPO)を提案する。
分析の結果,V-DPOは画像コントラストの嗜好データからの学習に優れており,視覚的文脈のニュアンスを抽出し理解する能力に優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-11-05T01:24:37Z) - VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment [55.7956150385255]
本稿では,視覚言語モデルの整合性向上のためのAIフィードバックの有効性について検討する。
最初の大規模視覚言語フィードバックデータセットであるVLFeedbackを紹介する。
我々は、VLFeedback上で直接選好最適化によって微調整されたLVLMであるSilkieを訓練する。
論文 参考訳(メタデータ) (2024-10-12T07:56:47Z) - MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models [115.16022378880376]
MRAG-Benchというマルチモーダル検索拡張生成ベンチマークを導入する。
MRAG-Benchは16,130枚の画像と1,353個の人間による複数の質問からなる。
その結果,すべての大規模視覚言語モデル (LVLM) は,テキスト知識と比較して画像で拡張すると改善が見られた。
論文 参考訳(メタデータ) (2024-10-10T17:55:02Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
大規模言語モデル(LLM)と人間の嗜好との整合性を高める新しいフレームワークを提案する。
私たちのキーとなるアイデアは、小さな(種)データの中で人間の事前知識を活用することです。
本稿では,ノイズ認識型選好学習アルゴリズムを導入し,生成した選好データにおける品質低下のリスクを軽減する。
論文 参考訳(メタデータ) (2024-06-06T18:01:02Z) - Enhancing Visual-Language Modality Alignment in Large Vision Language Models via Self-Improvement [102.22911097049953]
SIMAは、自己改善を通じて視覚的および言語的モダリティアライメントを強化するフレームワークである。
コンテキスト内自己批判機構を使用して、プライオリティチューニングのためのレスポンスペアを選択する。
SIMAは従来の手法よりも優れたモダリティアライメントを実現することを実証する。
論文 参考訳(メタデータ) (2024-05-24T23:09:27Z) - Calibrated Self-Rewarding Vision Language Models [27.686545023186852]
LVLM(Large Vision-Language Models)は、訓練済みの大規模言語モデル(LLM)と視覚モデルを統合することで、指導チューニングを通じて大幅に進歩した。
LVLMは、しばしば幻覚現象を示し、生成されたテキスト応答は言語的に妥当に見えるが、入力画像に矛盾する。
本稿では,候補応答を反復的に生成し,各応答に対する報酬を評価し,微調整のための選好データをキュレートすることで,モデルの自己改善を可能にするCalibrated Self-Rewarding(CSR)アプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T14:30:33Z) - VALOR-EVAL: Holistic Coverage and Faithfulness Evaluation of Large Vision-Language Models [57.43276586087863]
LVLM(Large Vision-Language Models)は幻覚に悩まされ、このモデルでは可聴音を発生させるが、実際には誤出力を発生させる。
既存のベンチマークはスコープに限られており、主にオブジェクト幻覚に焦点を当てている。
対象,属性,関係を多次元のベンチマークで表現し,連想バイアスに基づいて画像を選択する。
論文 参考訳(メタデータ) (2024-04-22T04:49:22Z) - ALLaVA: Harnessing GPT4V-Synthesized Data for Lite Vision-Language Models [45.040292339670096]
大規模視覚言語モデル(LVLM)は、その強力な推論と一般化能力を備えた幅広い視覚言語タスクの前提を示してきた。
本研究では,従来のLVLMとリソースフレンドリなライトバージョンのパフォーマンスギャップを,高品質なトレーニングデータを用いて橋渡しすることを目的とする。
論文 参考訳(メタデータ) (2024-02-18T19:26:49Z) - Multi-modal Preference Alignment Remedies Degradation of Visual Instruction Tuning on Language Models [7.056824589733873]
MLLM(Multi-modal large language model)は、実運用における画像とテキストの相互変換のマルチターンクエリをサポートすることが期待されている。
現在のMLLMは、視覚的な問合せのデータセットで訓練されており、劣化に悩まされる可能性がある。
そこで本研究では,MLLMの言語能力の回復と向上を図った,細粒度アノテーションを用いた蒸留法に基づくマルチモーダルアライメントモデルを提案する。
論文 参考訳(メタデータ) (2024-02-16T18:42:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。