Winning Amazon KDD Cup'24
- URL: http://arxiv.org/abs/2408.04658v1
- Date: Mon, 5 Aug 2024 14:40:04 GMT
- Title: Winning Amazon KDD Cup'24
- Authors: Chris Deotte, Ivan Sorokin, Ahmet Erdem, Benedikt Schifferer, Gilberto Titericz Jr, Simon Jegou,
- Abstract summary: The challenge was to build a useful assistant, answering questions in the domain of online shopping.
The competition contained 57 diverse tasks, covering 5 different task types and across 4 different tracks.
Our solution is a single model per track. We fine-tune Qwen2-72B-Instruct on our own training dataset.
- Score: 0.6967835043237027
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper describes the winning solution of all 5 tasks for the Amazon KDD Cup 2024 Multi Task Online Shopping Challenge for LLMs. The challenge was to build a useful assistant, answering questions in the domain of online shopping. The competition contained 57 diverse tasks, covering 5 different task types (e.g. multiple choice) and across 4 different tracks (e.g. multi-lingual). Our solution is a single model per track. We fine-tune Qwen2-72B-Instruct on our own training dataset. As the competition released only 96 example questions, we developed our own training dataset by processing multiple public datasets or using Large Language Models for data augmentation and synthetic data generation. We apply wise-ft to account for distribution shifts and ensemble multiple LoRA adapters in one model. We employed Logits Processors to constrain the model output on relevant tokens for the tasks. AWQ 4-bit Quantization and vLLM are used during inference to predict the test dataset in the time constraints of 20 to 140 minutes depending on the track. Our solution achieved the first place in each individual track and is the first place overall of Amazons KDD Cup 2024.
Related papers
- Winning Solution For Meta KDD Cup' 24 [6.471894753117029]
This paper describes the winning solutions of all tasks in Meta KDD Cup 24 from db3 team.
The challenge is to build a RAG system from web sources and knowledge graphs.
Our solution achieves 1st place on all three tasks, achieving a score of 28.4%, 42.7%, and 47.8%, respectively.
arXiv Detail & Related papers (2024-09-13T06:10:42Z) - Task-customized Masked AutoEncoder via Mixture of Cluster-conditional
Experts [104.9871176044644]
Masked Autoencoder(MAE) is a prevailing self-supervised learning method that achieves promising results in model pre-training.
We propose a novel MAE-based pre-training paradigm, Mixture of Cluster-conditional Experts (MoCE)
MoCE trains each expert only with semantically relevant images by using cluster-conditional gates.
arXiv Detail & Related papers (2024-02-08T03:46:32Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset [75.9621305227523]
We introduce LMSYS-Chat-1M, a large-scale dataset containing one million real-world conversations with 25 state-of-the-art large language models (LLMs)
This dataset is collected from 210K IP addresses in the wild on our Vicuna demo and Arena website.
We demonstrate its versatility through four use cases: developing content moderation models that perform similarly to GPT-4, building a safety benchmark, training instruction-following models that perform similarly to Vicuna, and creating challenging benchmark questions.
arXiv Detail & Related papers (2023-09-21T12:13:55Z) - STG-MTL: Scalable Task Grouping for Multi-Task Learning Using Data Map [4.263847576433289]
Multi-Task Learning (MTL) is a powerful technique that has gained popularity due to its performance improvement over traditional Single-Task Learning (STL)
However, MTL is often challenging because there is an exponential number of possible task groupings.
We propose a new data-driven method that addresses these challenges and provides a scalable and modular solution for classification task grouping.
arXiv Detail & Related papers (2023-07-07T03:54:26Z) - Predict NAS Multi-Task by Stacking Ensemble Models using GP-NAS [1.819714933798177]
How to analysis and train dataset to overcome overfitting is the core problem we should deal with.
Our stacking model ranked 1st in CVPR 2022 Track 2 Challenge.
arXiv Detail & Related papers (2023-05-02T13:59:58Z) - Behavior Retrieval: Few-Shot Imitation Learning by Querying Unlabeled
Datasets [73.2096288987301]
We propose a simple approach that uses a small amount of downstream expert data to selectively query relevant behaviors from an offline, unlabeled dataset.
We observe that our method learns to query only the relevant transitions to the task, filtering out sub-optimal or task-irrelevant data.
Our simple querying approach outperforms more complex goal-conditioned methods by 20% across simulated and real robotic manipulation tasks from images.
arXiv Detail & Related papers (2023-04-18T05:42:53Z) - Task Compass: Scaling Multi-task Pre-training with Task Prefix [122.49242976184617]
Existing studies show that multi-task learning with large-scale supervised tasks suffers from negative effects across tasks.
We propose a task prefix guided multi-task pre-training framework to explore the relationships among tasks.
Our model can not only serve as the strong foundation backbone for a wide range of tasks but also be feasible as a probing tool for analyzing task relationships.
arXiv Detail & Related papers (2022-10-12T15:02:04Z) - Winning solutions and post-challenge analyses of the ChaLearn AutoDL
challenge 2019 [112.36155380260655]
This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series.
Results show that DL methods dominated, though popular Neural Architecture Search (NAS) was impractical.
A high level modular organization emerged featuring a "meta-learner", "data ingestor", "model selector", "model/learner", and "evaluator"
arXiv Detail & Related papers (2022-01-11T06:21:18Z) - AutoML Meets Time Series Regression Design and Analysis of the
AutoSeries Challenge [21.49840594645196]
First Automated Time Series Regression challenge (AutoSeries) for the WSDM Cup 2020.
We present its design, analysis, and post-hoc experiments.
arXiv Detail & Related papers (2021-07-28T06:30:46Z) - Conditional Channel Gated Networks for Task-Aware Continual Learning [44.894710899300435]
Convolutional Neural Networks experience catastrophic forgetting when optimized on a sequence of learning problems.
We introduce a novel framework to tackle this problem with conditional computation.
We validate our proposal on four continual learning datasets.
arXiv Detail & Related papers (2020-03-31T19:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.