論文の概要: Interventional Causal Structure Discovery over Graphical Models with Convergence and Optimality Guarantees
- arxiv url: http://arxiv.org/abs/2408.04819v1
- Date: Fri, 9 Aug 2024 02:22:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 16:48:31.546130
- Title: Interventional Causal Structure Discovery over Graphical Models with Convergence and Optimality Guarantees
- Title(参考訳): 収束性と最適性保証を有する図形モデルによるインターベンショナル因果構造発見
- Authors: Qiu Chengbo, Yang Kai,
- Abstract要約: 因果構造学習のための二段階最適化(Bloom)フレームワークを開発した。
ブルームは、介入データと観測データの両方から因果構造発見を理論的に支援するだけでなく、効率的な因果構造発見アルゴリズムを目指す。
合成と実世界の両方のデータセットの実験を通して、ブルームは他の主要な学習アルゴリズムを著しく上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning causal structure from sampled data is a fundamental problem with applications in various fields, including healthcare, machine learning and artificial intelligence. Traditional methods predominantly rely on observational data, but there exist limits regarding the identifiability of causal structures with only observational data. Interventional data, on the other hand, helps establish a cause-and-effect relationship by breaking the influence of confounding variables. It remains to date under-explored to develop a mathematical framework that seamlessly integrates both observational and interventional data in causal structure learning. Furthermore, existing studies often focus on centralized approaches, necessitating the transfer of entire datasets to a single server, which lead to considerable communication overhead and heightened risks to privacy. To tackle these challenges, we develop a bilevel polynomial optimization (Bloom) framework. Bloom not only provides a powerful mathematical modeling framework, underpinned by theoretical support, for causal structure discovery from both interventional and observational data, but also aspires to an efficient causal discovery algorithm with convergence and optimality guarantees. We further extend Bloom to a distributed setting to reduce the communication overhead and mitigate data privacy risks. It is seen through experiments on both synthetic and real-world datasets that Bloom markedly surpasses other leading learning algorithms.
- Abstract(参考訳): サンプルデータから因果構造を学ぶことは、医療、機械学習、人工知能など、さまざまな分野の応用における根本的な問題である。
従来の手法は主に観測データに依存するが、観測データのみを持つ因果構造の識別性には限界がある。
一方、干渉データは、共起変数の影響を壊すことによって因果関係を確立するのに役立ちます。
因果構造学習において観察的データと介入的データの両方をシームレスに統合する数学的枠組みの開発は、現在なお検討中である。
さらに、既存の研究は中央集権的なアプローチに重点を置いており、データセット全体を単一のサーバに転送する必要があるため、通信オーバーヘッドが大きくなり、プライバシへのリスクが高まる。
これらの課題に対処するため,両レベル多項式最適化(Bloom)フレームワークを開発した。
ブルームは、介入データと観測データの両方から因果構造を発見するための理論的な支援によって支えられている強力な数学的モデリングフレームワークを提供するだけでなく、収束性と最適性を保証する効率的な因果構造探索アルゴリズムを意図している。
さらにBloomを分散環境に拡張し、通信オーバーヘッドを低減し、データのプライバシリスクを軽減する。
合成と実世界の両方のデータセットの実験を通して、ブルームは他の主要な学習アルゴリズムを著しく上回っている。
関連論文リスト
- Learning to refine domain knowledge for biological network inference [2.209921757303168]
摂動実験により、生物学者は興味のある変数間の因果関係を発見することができる。
これらのデータの空間性と高次元性は因果構造学習アルゴリズムに重大な課題をもたらす。
そこで本研究では,データ観測に基づくドメイン知識の補修アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-18T12:53:23Z) - TS-CausalNN: Learning Temporal Causal Relations from Non-linear Non-stationary Time Series Data [0.42156176975445486]
本稿では,時系列因果ニューラルネットワーク(TS-Causal Neural Network,TS-CausalNN)を提案する。
単純な並列設計に加えて、提案モデルの利点は、データの非定常性と非線形性を自然に扱うことである。
論文 参考訳(メタデータ) (2024-04-01T20:33:29Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
FL(Federated Learning)は,FLオーケストレーション(PS)の下でクライアント上でモデルをトレーニングする,急速に成長する領域として認識されている。
本稿では,非滑らかなFL問題に対して,新しい一次分離アルゴリズムを提案し,保証する。
その独特な洞察力のある性質とその分析も提示される。
論文 参考訳(メタデータ) (2023-10-30T14:15:47Z) - Causal disentanglement of multimodal data [1.589226862328831]
因果関係を持つ重要な特徴を発見するために,マルチモーダルデータと既知の物理を利用する因果表現学習アルゴリズム(causalPIMA)を導入する。
本研究は,完全教師なし環境下で重要な特徴を同時に発見しながら,解釈可能な因果構造を学習する能力を示すものである。
論文 参考訳(メタデータ) (2023-10-27T20:30:11Z) - Trust Your $\nabla$: Gradient-based Intervention Targeting for Causal Discovery [49.084423861263524]
本稿では,GIT を短縮した新しいグラディエント型インターベンションターゲティング手法を提案する。
GITは、介入獲得関数の信号を提供するために勾配に基づく因果探索フレームワークの勾配推定器を「信頼」する。
我々はシミュレーションおよび実世界のデータセットで広範な実験を行い、GITが競合するベースラインと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-11-24T17:04:45Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Federated Causal Discovery [74.37739054932733]
本稿では,DAG-Shared Federated Causal Discovery (DS-FCD) という勾配学習フレームワークを開発する。
ローカルデータに直接触れることなく因果グラフを学習し、データの不均一性を自然に扱うことができる。
合成および実世界の両方のデータセットに対する大規模な実験により,提案手法の有効性が検証された。
論文 参考訳(メタデータ) (2021-12-07T08:04:12Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Causal Discovery from Incomplete Data: A Deep Learning Approach [21.289342482087267]
因果構造探索と因果構造探索を反復的に行うために, 因果学習を提案する。
ICLは、異なるデータメカニズムで最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-15T14:28:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。