HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction
- URL: http://arxiv.org/abs/2408.04948v1
- Date: Fri, 9 Aug 2024 09:07:48 GMT
- Title: HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction
- Authors: Bhaskarjit Sarmah, Benika Hall, Rohan Rao, Sunil Patel, Stefano Pasquali, Dhagash Mehta,
- Abstract summary: We introduce a novel approach based on a combination, called HybridRAG, of the Knowledge Graphs (KGs) based RAG techniques.
We show that HybridRAG which retrieves context from both vector database and KG outperforms both traditional VectorRAG and GraphRAG individually.
The proposed technique has applications beyond the financial domain.
- Score: 1.0390583509657403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extraction and interpretation of intricate information from unstructured text data arising in financial applications, such as earnings call transcripts, present substantial challenges to large language models (LLMs) even using the current best practices to use Retrieval Augmented Generation (RAG) (referred to as VectorRAG techniques which utilize vector databases for information retrieval) due to challenges such as domain specific terminology and complex formats of the documents. We introduce a novel approach based on a combination, called HybridRAG, of the Knowledge Graphs (KGs) based RAG techniques (called GraphRAG) and VectorRAG techniques to enhance question-answer (Q&A) systems for information extraction from financial documents that is shown to be capable of generating accurate and contextually relevant answers. Using experiments on a set of financial earning call transcripts documents which come in the form of Q&A format, and hence provide a natural set of pairs of ground-truth Q&As, we show that HybridRAG which retrieves context from both vector database and KG outperforms both traditional VectorRAG and GraphRAG individually when evaluated at both the retrieval and generation stages in terms of retrieval accuracy and answer generation. The proposed technique has applications beyond the financial domain
Related papers
- ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation [16.204046295248546]
Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models.
We introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG)
We build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method.
arXiv Detail & Related papers (2025-02-14T03:28:36Z) - Knowledge Graph-Guided Retrieval Augmented Generation [34.83235788116369]
We propose a Knowledge Graph-Guided Retrieval Augmented Generation framework.
KG$2$RAG provides fact-level relationships between chunks, improving the diversity and coherence of the retrieved results.
arXiv Detail & Related papers (2025-02-08T02:14:31Z) - GeAR: Generation Augmented Retrieval [82.20696567697016]
Document retrieval techniques form the foundation for the development of large-scale information systems.
The prevailing methodology is to construct a bi-encoder and compute the semantic similarity.
We propose a new method called $textbfGe$neration that incorporates well-designed fusion and decoding modules.
arXiv Detail & Related papers (2025-01-06T05:29:00Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information.
Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information.
Unlike conventional RAG, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains.
arXiv Detail & Related papers (2024-12-31T06:59:35Z) - G-RAG: Knowledge Expansion in Material Science [0.0]
Graph RAG integrates graph databases to enhance the retrieval process.
We implement an agent-based parsing technique to achieve a more detailed representation of the documents.
arXiv Detail & Related papers (2024-11-21T21:22:58Z) - VisRAG: Vision-based Retrieval-augmented Generation on Multi-modality Documents [66.42579289213941]
Retrieval-augmented generation (RAG) is an effective technique that enables large language models to utilize external knowledge sources for generation.
In this paper, we introduce VisRAG, which tackles this issue by establishing a vision-language model (VLM)-based RAG pipeline.
In this pipeline, instead of first parsing the document to obtain text, the document is directly embedded using a VLM as an image and then retrieved to enhance the generation of a VLM.
arXiv Detail & Related papers (2024-10-14T15:04:18Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining.
This paper provides the first comprehensive overview of GraphRAG methodologies.
We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation.
arXiv Detail & Related papers (2024-08-15T12:20:24Z) - Query-Specific Knowledge Graphs for Complex Finance Topics [6.599344783327053]
We focus on the CODEC dataset, where domain experts create challenging questions.
We show that state-of-the-art ranking systems have headroom for improvement.
We demonstrate that entity and document relevance are positively correlated.
arXiv Detail & Related papers (2022-11-08T10:21:13Z) - Graph Learning based Recommender Systems: A Review [111.43249652335555]
Graph Learning based Recommender Systems (GLRS) employ advanced graph learning approaches to model users' preferences and intentions as well as items' characteristics for recommendations.
We provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations.
arXiv Detail & Related papers (2021-05-13T14:50:45Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.