Think-on-Graph 2.0: Deep and Faithful Large Language Model Reasoning with Knowledge-guided Retrieval Augmented Generation
- URL: http://arxiv.org/abs/2407.10805v5
- Date: Tue, 8 Oct 2024 13:19:41 GMT
- Title: Think-on-Graph 2.0: Deep and Faithful Large Language Model Reasoning with Knowledge-guided Retrieval Augmented Generation
- Authors: Shengjie Ma, Chengjin Xu, Xuhui Jiang, Muzhi Li, Huaren Qu, Cehao Yang, Jiaxin Mao, Jian Guo,
- Abstract summary: Think-on-Graph 2.0 (ToG-2) is a hybrid RAG framework that iteratively retrieves information from both unstructured and structured knowledge sources.
ToG-2 alternates between graph retrieval and context retrieval to search for in-depth clues relevant to the question.
Extensive experiments show that ToG-2 achieves state-of-the-art (SOTA) performance on 6 out of 7 knowledge-intensive datasets with GPT-3.5.
- Score: 14.448198170932226
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-augmented generation (RAG) has enhanced large language models (LLMs) by using knowledge retrieval to address knowledge gaps. However, existing RAG approaches often fail to ensure the depth and completeness of the information retrieved, which is essential for complex reasoning tasks. In this work, we present Think-on-Graph 2.0 (ToG-2), a hybrid RAG framework that iteratively retrieves information from both unstructured and structured knowledge sources in a tightly integrated manner. Specifically, ToG-2 leverages knowledge graphs (KGs) to connect documents via entities, facilitating deep and knowledge-guided context retrieval. Simultaneously, it uses documents as entity contexts to enable precise and efficient graph retrieval. ToG-2 alternates between graph retrieval and context retrieval to search for in-depth clues relevant to the question, enabling LLMs to generate accurate answers. We conduct a series of experiments to demonstrate the following advantages of ToG-2: (1) ToG-2 tightly integrates context retrieval and graph retrieval, enhancing context retrieval through the KG while enabling reliable graph retrieval based on contexts; (2) it achieves deep and faithful reasoning in LLMs through an iterative knowledge retrieval process that integrates contexts and the KG; and (3) ToG-2 is training-free and compatible with various LLMs as a plug-and-play solution. Extensive experiments show that ToG-2 achieves state-of-the-art (SOTA) performance on 6 out of 7 knowledge-intensive datasets with GPT-3.5, and can elevate the performance of smaller models (e.g., LLAMA-2-13B) to the level of GPT-3.5's direct reasoning.
Related papers
- G-RAG: Knowledge Expansion in Material Science [0.0]
Graph RAG integrates graph databases to enhance the retrieval process.
We implement an agent-based parsing technique to achieve a more detailed representation of the documents.
arXiv Detail & Related papers (2024-11-21T21:22:58Z) - Paths-over-Graph: Knowledge Graph Empowered Large Language Model Reasoning [19.442426875488675]
We propose Paths-over-Graph (PoG), a novel method that enhances Large Language Models (LLMs) reasoning by integrating knowledge reasoning paths from KGs.
PoG tackles multi-hop and multi-entity questions through a three-phase dynamic multi-hop path exploration.
In experiments, PoG with GPT-3.5-Turbo surpasses ToG with GPT-4 by up to 23.9%.
arXiv Detail & Related papers (2024-10-18T06:57:19Z) - iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models [0.7165255458140439]
iText2KG is a method for incremental, topic-independent Knowledge Graph construction without post-processing.
Our method demonstrates superior performance compared to baseline methods across three scenarios.
arXiv Detail & Related papers (2024-09-05T06:49:14Z) - Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
Large Language Models (LLMs) may suffer from hallucinations in real-world applications due to the lack of relevant knowledge.
Knowledge Graph Question Answering (KGQA) serves as a critical touchstone for the integration.
We propose an interactive KGQA framework that leverages the interactive learning capabilities of LLMs to perform reasoning and Debating over Graphs (DoG)
arXiv Detail & Related papers (2024-09-05T01:11:58Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - CorpusLM: Towards a Unified Language Model on Corpus for Knowledge-Intensive Tasks [20.390672895839757]
Retrieval-augmented generation (RAG) has emerged as a popular solution to enhance factual accuracy.
Traditional retrieval modules often rely on large document index and disconnect with generative tasks.
We propose textbfCorpusLM, a unified language model that integrates generative retrieval, closed-book generation, and RAG.
arXiv Detail & Related papers (2024-02-02T06:44:22Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - GraphAdapter: Tuning Vision-Language Models With Dual Knowledge Graph [63.81641578763094]
adapter-style efficient transfer learning (ETL) has shown excellent performance in the tuning of vision-language models (VLMs)
We propose an effective adapter-style tuning strategy, dubbed GraphAdapter, which performs the textual adapter by explicitly modeling the dual-modality structure knowledge.
In particular, the dual knowledge graph is established with two sub-graphs, i.e., a textual knowledge sub-graph, and a visual knowledge sub-graph, where the nodes and edges represent the semantics/classes and their correlations in two modalities, respectively.
arXiv Detail & Related papers (2023-09-24T12:56:40Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z) - Text-Augmented Open Knowledge Graph Completion via Pre-Trained Language
Models [53.09723678623779]
We propose TAGREAL to automatically generate quality query prompts and retrieve support information from large text corpora.
The results show that TAGREAL achieves state-of-the-art performance on two benchmark datasets.
We find that TAGREAL has superb performance even with limited training data, outperforming existing embedding-based, graph-based, and PLM-based methods.
arXiv Detail & Related papers (2023-05-24T22:09:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.