論文の概要: Benchmarking Conventional and Learned Video Codecs with a Low-Delay Configuration
- arxiv url: http://arxiv.org/abs/2408.05042v1
- Date: Fri, 9 Aug 2024 12:55:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-12 15:47:15.133641
- Title: Benchmarking Conventional and Learned Video Codecs with a Low-Delay Configuration
- Title(参考訳): 低遅延構成による従来のビデオコーデックと学習ビデオコーデックのベンチマーク
- Authors: Siyue Teng, Yuxuan Jiang, Ge Gao, Fan Zhang, Thomas Davis, Zoe Liu, David Bull,
- Abstract要約: 本稿では,低遅延構成に基づく従来型および学習型ビデオ符号化手法の比較研究を行う。
その結果, YCbCr 4:2:0色空間におけるAOMおよびMPEG共通試験条件で定義された試験系列について, 公平かつ有意義な比較を行うことができた。
評価結果から,JVETのECMコーデックは,テスト対象のすべてのコーデックの中で,最高の全体的な符号化性能を提供することがわかった。
- 参考スコア(独自算出の注目度): 11.016119119250765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in video compression have seen significant coding performance improvements with the development of new standards and learning-based video codecs. However, most of these works focus on application scenarios that allow a certain amount of system delay (e.g., Random Access mode in MPEG codecs), which is not always acceptable for live delivery. This paper conducts a comparative study of state-of-the-art conventional and learned video coding methods based on a low delay configuration. Specifically, this study includes two MPEG standard codecs (H.266/VVC VTM and JVET ECM), two AOM codecs (AV1 libaom and AVM), and two recent neural video coding models (DCVC-DC and DCVC-FM). To allow a fair and meaningful comparison, the evaluation was performed on test sequences defined in the AOM and MPEG common test conditions in the YCbCr 4:2:0 color space. The evaluation results show that the JVET ECM codecs offer the best overall coding performance among all codecs tested, with a 16.1% (based on PSNR) average BD-rate saving over AOM AVM, and 11.0% over DCVC-FM. We also observed inconsistent performance with the learned video codecs, DCVC-DC and DCVC-FM, for test content with large background motions.
- Abstract(参考訳): ビデオ圧縮の最近の進歩は、新しい標準と学習ベースのビデオコーデックの開発により、コーディング性能が大幅に向上した。
しかし、これらの作業のほとんどは、ある程度のシステム遅延(MPEGコーデックのランダムアクセスモードなど)を可能にするアプリケーションシナリオに焦点を当てている。
本稿では,低遅延構成に基づく従来型および学習型ビデオ符号化手法の比較研究を行う。
具体的には、2つのMPEG標準コーデック(H.266/VVC VTMとJVET ECM)、2つのAOMコーデック(AV1 libaomとAVM)、2つの最近のニューラルビデオ符号化モデル(DCVC-DCとDCVC-FM)を含む。
その結果, YCbCr 4:2:0色空間におけるAOMおよびMPEG共通試験条件で定義された試験系列について, 公平かつ有意義な比較を行うことができた。
評価結果から、JVETのECMコーデックは、AOM AVM上での平均BDレートを16.1%、DCVC-FMで11.0%、テストされたすべてのコーデックの中で最高の全体的なコーディング性能を提供することが示された。
また,学習ビデオコーデック(DCVC-DC)とDCVC-FM(DCVC-FM)との不整合性も観察した。
関連論文リスト
- PNVC: Towards Practical INR-based Video Compression [14.088444622391501]
自動エンコーダと過度に適合したソリューションを革新的に組み合わせた新しいINRベースのコーディングフレームワークであるPNVCを提案する。
PNVCはHEVC HM 18.0(LD)に対して35%以上のBDレートの節約を実現している。
論文 参考訳(メタデータ) (2024-09-02T05:31:11Z) - When Video Coding Meets Multimodal Large Language Models: A Unified Paradigm for Video Coding [112.44822009714461]
CMVC(Cross-Modality Video Coding)は、ビデオ符号化における多モード表現とビデオ生成モデルを探索する先駆的な手法である。
復号化の際には、以前に符号化されたコンポーネントとビデオ生成モデルを利用して複数の復号モードを生成する。
TT2Vは効果的な意味再構成を実現し,IT2Vは競争力のある知覚整合性を示した。
論文 参考訳(メタデータ) (2024-08-15T11:36:18Z) - Deep Video Codec Control for Vision Models [33.95098277668838]
標準符号化ビデオはディープビジョンモデルの性能を著しく低下させることを示した。
本稿では、帯域制限と下流の深い視力性能の両方を考慮した、エンド・ツー・エンドの学習可能なDeep Video制御について述べる。
論文 参考訳(メタデータ) (2023-08-30T16:44:38Z) - Sandwiched Video Compression: Efficiently Extending the Reach of
Standard Codecs with Neural Wrappers [11.968545394054816]
本稿では,標準的なビデオにニューラルネットワークをラップするビデオ圧縮システムを提案する。
ネットワークは、速度歪み損失関数を最適化するために共同で訓練される。
HEVCと同等品質で30%の改善が見られた。
論文 参考訳(メタデータ) (2023-03-20T22:03:44Z) - Video compression dataset and benchmark of learning-based video-quality
metrics [55.41644538483948]
本稿では,ビデオ圧縮の評価を行うビデオ品質指標の新しいベンチマークを提案する。
これは、異なる標準でエンコードされた約2,500のストリームからなる、新しいデータセットに基づいている。
クラウドソーシングによるペアワイズ比較により,主観的スコアを収集した。
論文 参考訳(メタデータ) (2022-11-22T09:22:28Z) - CANF-VC: Conditional Augmented Normalizing Flows for Video Compression [81.41594331948843]
CANF-VCは、エンドツーエンドの学習ベースのビデオ圧縮システムである。
条件付き拡張正規化フロー(ANF)に基づく。
論文 参考訳(メタデータ) (2022-07-12T04:53:24Z) - Efficient VVC Intra Prediction Based on Deep Feature Fusion and
Probability Estimation [57.66773945887832]
本稿では,フレーム内予測におけるVersatile Video Coding (VVC) の複雑性を,深層融合と確率推定の2段階のフレームワークを用いて最適化することを提案する。
特に高精細度(HD)および超高精細度(UHD)ビデオシーケンスにおいて,提案手法の優位性を示す実験結果が得られた。
論文 参考訳(メタデータ) (2022-05-07T08:01:32Z) - End-to-End Rate-Distortion Optimized Learned Hierarchical Bi-Directional
Video Compression [10.885590093103344]
学習VCは、非線形変換、運動、エントロピーモデルのエンドツーエンドの速度歪み(R-D)最適化トレーニングを同時に行うことができる。
本稿では,階層型モーションサンプリングとエンドツーエンド最適化の利点を組み合わせた,学習型階層型双方向ビデオ(LHBDC)を提案する。
論文 参考訳(メタデータ) (2021-12-17T14:30:22Z) - Perceptual Learned Video Compression with Recurrent Conditional GAN [158.0726042755]
本稿では, PVC (Perceptual Learned Video Compression) アプローチを提案する。
PLVCは低ビットレートで映像を知覚品質に圧縮することを学ぶ。
ユーザスタディでは、最新の学習ビデオ圧縮手法と比較して、PLVCの優れた知覚性能をさらに検証している。
論文 参考訳(メタデータ) (2021-09-07T13:36:57Z) - ELF-VC: Efficient Learned Flexible-Rate Video Coding [61.10102916737163]
低レイテンシモードの性能向上を実現するための,学習ビデオ圧縮のための新しいアイデアをいくつか提案する。
一般的なビデオテストセット UVG と MCL-JCV 上で,ELF-VC と呼ぶ手法をベンチマークする。
我々の手法は少なくとも5倍高速に動作し、これらの数値を報告するすべてのMLコーデックよりもパラメータが少ない。
論文 参考訳(メタデータ) (2021-04-29T17:50:35Z) - Conditional Coding and Variable Bitrate for Practical Learned Video
Coding [1.6619384554007748]
条件符号化と量子化ゲインベクトルは、単一のエンコーダ/デコーダペアに柔軟性を提供するために使用される。
提案手法はHEVCと同等の性能を示す。
論文 参考訳(メタデータ) (2021-04-19T07:48:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。