A GNN Model with Adaptive Weights for Session-Based Recommendation Systems
- URL: http://arxiv.org/abs/2408.05051v1
- Date: Fri, 9 Aug 2024 13:13:43 GMT
- Title: A GNN Model with Adaptive Weights for Session-Based Recommendation Systems
- Authors: Begüm Özbay, Dr. Resul Tugay, Prof. Dr. Şule Gündüz Öğüdücü,
- Abstract summary: We present a novel approach that can be used in session-based recommendations (SBRs)
We introduce an adaptive weighting mechanism applied to the graph neural network (GNN) vectors.
Items are assigned varying degrees of importance within each session as a result of the weighting mechanism.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Session-based recommendation systems aim to model users' interests based on their sequential interactions to predict the next item in an ongoing session. In this work, we present a novel approach that can be used in session-based recommendations (SBRs). Our goal is to enhance the prediction accuracy of an existing session-based recommendation model, the SR-GNN model, by introducing an adaptive weighting mechanism applied to the graph neural network (GNN) vectors. This mechanism is designed to incorporate various types of side information obtained through different methods during the study. Items are assigned varying degrees of importance within each session as a result of the weighting mechanism. We hypothesize that this adaptive weighting strategy will contribute to more accurate predictions and thus improve the overall performance of SBRs in different scenarios. The adaptive weighting strategy can be utilized to address the cold start problem in SBRs by dynamically adjusting the importance of items in each session, thus providing better recommendations in cold start situations, such as for new users or newly added items. Our experimental evaluations on the Dressipi dataset demonstrate the effectiveness of the proposed approach compared to traditional models in enhancing the user experience and highlighting its potential to optimize the recommendation results in real-world applications.
Related papers
- SessionRec: Next Session Prediction Paradigm For Generative Sequential Recommendation [20.51953517144625]
We introduce SessionRec, a novel next-session prediction paradigm (NSPP) for generative sequential recommendation.
Unlike NIPP's item-level autoregressive generation that contradicts actual session-based user interactions, our framework introduces a session-aware representation learning.
We found that incorporating a rank loss for items within the session under the next session prediction paradigm can significantly improve the ranking effectiveness of generative sequence recommendation models.
arXiv Detail & Related papers (2025-02-14T13:36:20Z) - Contrastive Learning for Cold Start Recommendation with Adaptive Feature Fusion [2.2194815687410627]
This paper proposes a cold start recommendation model that integrates contrastive learning.
The model dynamically adjusts the weights of key features through an adaptive feature selection module.
It integrates user attributes, item meta-information, and contextual features by combining a multimodal feature fusion mechanism.
arXiv Detail & Related papers (2025-02-05T23:15:31Z) - Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.
For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.
We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Performance Comparison of Session-based Recommendation Algorithms based on GNNs [6.617487928813376]
In session-based recommendation settings, a recommender system has no access to long-term user profiles.
We present the results of an evaluation of eight recent GNN-based approaches that were published in high-quality outlets.
arXiv Detail & Related papers (2023-12-27T19:24:26Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Preference Enhanced Social Influence Modeling for Network-Aware Cascade
Prediction [59.221668173521884]
We propose a novel framework to promote cascade size prediction by enhancing the user preference modeling.
Our end-to-end method makes the user activating process of information diffusion more adaptive and accurate.
arXiv Detail & Related papers (2022-04-18T09:25:06Z) - Hybrid Model with Time Modeling for Sequential Recommender Systems [0.15229257192293202]
Booking.com organized the WSDM WebTour 2021 Challenge, which aims to benchmark models to recommend the final city in a trip.
We conducted several experiments to test different state-of-the-art deep learning architectures for recommender systems.
Our experimental result shows that the improved NARM outperforms all other state-of-the-art benchmark methods.
arXiv Detail & Related papers (2021-03-07T19:28:22Z) - TAGNN: Target Attentive Graph Neural Networks for Session-based
Recommendation [66.04457457299218]
We propose a novel target attentive graph neural network (TAGNN) model for session-based recommendation.
In TAGNN, target-aware attention adaptively activates different user interests with respect to varied target items.
The learned interest representation vector varies with different target items, greatly improving the expressiveness of the model.
arXiv Detail & Related papers (2020-05-06T14:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.