RT-Surv: Improving Mortality Prediction After Radiotherapy with Large Language Model Structuring of Large-Scale Unstructured Electronic Health Records
- URL: http://arxiv.org/abs/2408.05074v4
- Date: Fri, 13 Sep 2024 05:12:52 GMT
- Title: RT-Surv: Improving Mortality Prediction After Radiotherapy with Large Language Model Structuring of Large-Scale Unstructured Electronic Health Records
- Authors: Sangjoon Park, Chan Woo Wee, Seo Hee Choi, Kyung Hwan Kim, Jee Suk Chang, Hong In Yoon, Ik Jae Lee, Yong Bae Kim, Jaeho Cho, Ki Chang Keum, Chang Geol Lee, Hwa Kyung Byun, Woong Sub Koom,
- Abstract summary: This study explores the potential of large language models (LLMs) to structure unstructured electronic health record (EHR) data.
Data from 34,276 patients treated with radiotherapy (RT) at Yonsei Cancer Center were analyzed.
Survival prediction models were developed using statistical, machine learning, and deep learning approaches.
- Score: 2.608410928225647
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate patient selection is critical in radiotherapy (RT) to prevent ineffective treatments. Traditional survival prediction models, relying on structured data, often lack precision. This study explores the potential of large language models (LLMs) to structure unstructured electronic health record (EHR) data, thereby improving survival prediction accuracy through comprehensive clinical information integration. Data from 34,276 patients treated with RT at Yonsei Cancer Center between 2013 and 2023 were analyzed, encompassing both structured and unstructured data. An open-source LLM was used to structure the unstructured EHR data via single-shot learning, with its performance compared against a domain-specific medical LLM and a smaller variant. Survival prediction models were developed using statistical, machine learning, and deep learning approaches, incorporating both structured and LLM-structured data. Clinical experts evaluated the accuracy of the LLM-structured data. The open-source LLM achieved 87.5% accuracy in structuring unstructured EHR data without additional training, significantly outperforming the domain-specific medical LLM, which reached only 35.8% accuracy. Larger LLMs were more effective, particularly in extracting clinically relevant features like general condition and disease extent, which closely correlated with patient survival. Incorporating LLM-structured clinical features into survival prediction models significantly improved accuracy, with the C-index of deep learning models increasing from 0.737 to 0.820. These models also became more interpretable by emphasizing clinically significant factors. This study shows that general-domain LLMs, even without specific medical training, can effectively structure large-scale unstructured EHR data, substantially enhancing the accuracy and interpretability of clinical predictive models.
Related papers
- Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
In-hospital mortality (IHM) prediction for ICU patients is critical for timely interventions and efficient resource allocation.
This study integrates structured physiological data and clinical notes with Large Language Model (LLM)-generated expert summaries to improve IHM prediction accuracy.
arXiv Detail & Related papers (2024-11-25T16:36:38Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
We utilized data about 10,326 CKD patients, combining their clinical and claims information from 2009 to 2018.
A 24-month observation window was identified as optimal for balancing early detection and prediction accuracy.
The 2021 eGFR equation improved prediction accuracy and reduced racial bias, notably for African American patients.
arXiv Detail & Related papers (2024-10-02T03:21:01Z) - Is larger always better? Evaluating and prompting large language models for non-generative medical tasks [11.799956298563844]
This study benchmarks various models, including GPT-based LLMs, BERT-based models, and traditional clinical predictive models.
We focused on tasks such as readmission and prediction, disease hierarchy reconstruction, and biomedical sentence matching.
Results indicated that LLMs exhibited robust zero-shot predictive capabilities on structured EHR data when using well-designed prompting strategies.
For unstructured medical texts, LLMs did not outperform finetuned BERT models, which excelled in both supervised and unsupervised tasks.
arXiv Detail & Related papers (2024-07-26T06:09:10Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
Large Language Models (LLMs) are traditionally tailored for natural language processing.
This research investigates the adaptability of LLMs, like GPT-4, to EHR data.
In response to the longitudinal, sparse, and knowledge-infused nature of EHR data, our prompting approach involves taking into account specific characteristics.
arXiv Detail & Related papers (2024-01-25T20:14:50Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - All Data Inclusive, Deep Learning Models to Predict Critical Events in
the Medical Information Mart for Intensive Care III Database (MIMIC III) [0.0]
This study was performed using 42,818 hospital admissions involving 35,348 patients.
Over 75 million events across multiple data sources were processed, resulting in over 355 million tokens.
It is possible to predict in-hospital mortality with much better confidence and higher reliability from models built using all sources of data.
arXiv Detail & Related papers (2020-09-02T22:12:18Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.