論文の概要: Exploring the Limitations of Layer Synchronization in Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2408.05098v2
- Date: Thu, 23 Oct 2025 22:55:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-28 09:00:14.721346
- Title: Exploring the Limitations of Layer Synchronization in Spiking Neural Networks
- Title(参考訳): スパイクニューラルネットワークにおける層同期の限界を探る
- Authors: Roel Koopman, Amirreza Yousefzadeh, Mahyar Shahsavari, Guangzhi Tang, Manolis Sifalakis,
- Abstract要約: 真に非同期なシステムでは、すべてのニューロンが閾値を同時に評価し、シナプス前電流を受けるとスパイクを発生させることができる。
スパイクを減らし、推論を高速化し、競争力や精度を向上する非同期処理の可能性を示す。
- 参考スコア(独自算出の注目度): 0.3284483366177839
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Neural-network processing in machine learning applications relies on layer synchronization. This is practiced even in artificial Spiking Neural Networks (SNNs), which are touted as consistent with neurobiology, in spite of processing in the brain being in fact asynchronous. A truly asynchronous system however would allow all neurons to evaluate concurrently their threshold and emit spikes upon receiving any presynaptic current. Omitting layer synchronization is potentially beneficial, for latency and energy efficiency, but asynchronous execution of models previously trained with layer synchronization may entail a mismatch in network dynamics and performance. We present and quantify this problem, and show that models trained with layer synchronization either perform poorly in absence of the synchronization, or fail to benefit from any energy and latency reduction, when such a mechanism is in place. We then explore a potential solution direction, based on a generalization of backpropagation-based training that integrates knowledge about an asynchronous execution scheduling strategy, for learning models suitable for asynchronous processing. We experiment with two asynchronous neuron execution scheduling strategies in datasets that encode spatial and temporal information, and we show the potential of asynchronous processing to use less spikes (up to 50%), complete inference faster (up to 2x), and achieve competitive or even better accuracy (up to 10% higher). Our exploration affirms that asynchronous event-based AI processing can be indeed more efficient, but we need to rethink how we train our SNN models to benefit from it. (Source code available at: https://github.com/RoelMK/asynctorch)
- Abstract(参考訳): 機械学習アプリケーションにおけるニューラルネット処理は、レイヤ同期に依存する。
これは、実際には脳内の処理が非同期であるにもかかわらず、神経生物学と整合していると称される人工スパイキングニューラルネットワーク(SNN)でも実践されている。
しかし、真に非同期なシステムでは、すべてのニューロンがその閾値を同時に評価し、シナプス前電流を受けるとスパイクを発生させることができる。
レイヤ同期はレイテンシとエネルギー効率において潜在的に有益であるが、以前レイヤ同期でトレーニングされたモデルの非同期実行には、ネットワークのダイナミクスとパフォーマンスのミスマッチが伴う可能性がある。
本稿では,レイヤ同期で訓練したモデルにおいて,同期がない場合や,そのような機構が存在する場合のエネルギーと遅延の低減による恩恵が得られないことを提示する。
次に、非同期処理に適したモデルを学習するために、非同期実行スケジューリング戦略に関する知識を統合するバックプロパゲーションベースのトレーニングの一般化に基づいて、潜在的な解決策の方向性を探る。
空間的情報と時間的情報をエンコードするデータセットにおいて2つの非同期ニューロン実行スケジューリング戦略を実験し、スパイクを減らし(最大50%)、完全な推論を高速化し(最大2倍)、競争力や精度を向上する(最大10%高い)非同期処理の可能性を示す。
私たちの調査では、非同期イベントベースのAI処理が確かにより効率的であることを確認していますが、そのメリットを享受するためにSNNモデルをトレーニングする方法を再考する必要があります。
(ソースコードは、https://github.com/RoelMK/asynctorch)
関連論文リスト
- Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンからインスピレーションを得て、脳に似た計算の現実的なモデルを作成する。
既存のほとんどのSNNは、マルコフ特性を持つ一階常微分方程式(ODE)によってモデル化された、神経細胞膜電圧ダイナミクスの単一時間定数を仮定している。
本研究では, 膜電圧およびスパイク列車の長期依存性を分数次力学により捉えるフラクタルSPIKE微分方程式ニューラルネットワーク (fspikeDE) を提案する。
論文 参考訳(メタデータ) (2025-07-22T18:20:56Z) - Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - Advancing Spatio-Temporal Processing in Spiking Neural Networks through Adaptation [6.233189707488025]
本稿では、適応LIFニューロンとそのネットワークの動的、計算的、および学習特性について分析する。
適応LIFニューロンのネットワークの優越性は、複雑な時系列の予測と生成にまで及んでいることを示す。
論文 参考訳(メタデータ) (2024-08-14T12:49:58Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - SpikiLi: A Spiking Simulation of LiDAR based Real-time Object Detection
for Autonomous Driving [0.0]
Spiking Neural Networksは、電力効率、計算効率、処理遅延を大幅に改善する新しいニューラルネットワーク設計アプローチである。
まず,複雑なディープラーニングタスク,すなわちLidarベースの3Dオブジェクト検出による自動運転への適用性について説明する。
論文 参考訳(メタデータ) (2022-06-06T20:05:17Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Learning Without a Global Clock: Asynchronous Learning in a
Physics-Driven Learning Network [1.3124513975412255]
学習過程の非同期化は、理想的なシミュレーションにおいて、様々なタスクのパフォーマンスを劣化させるものではないことを示す。
我々は、勾配降下における非同期性とミニバッチの類似性を示し、それらが学習過程に類似した影響を示す。
論文 参考訳(メタデータ) (2022-01-10T05:38:01Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
スパイクニューラルネットワーク(SNN)は離散スパイクを通して情報を伝達し、空間時間情報を処理するのによく機能する。
適応型自己フィードバックと平衡興奮性および抑制性ニューロン(BackEISNN)を用いた深部スパイクニューラルネットワークを提案する。
MNIST、FashionMNIST、N-MNISTのデータセットに対して、我々のモデルは最先端の性能を達成した。
論文 参考訳(メタデータ) (2021-05-27T08:38:31Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
複雑な空間時間パターンを学習するためにSNNを訓練できるLeaky IntegrateとFireニューロンの効率的なトレーニングアルゴリズムを導出する。
我々は,ニューロンとシナプスのメムリスタに基づくネットワークのためのCMOS回路実装を開発した。
論文 参考訳(メタデータ) (2021-04-21T18:23:31Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z) - Event-based Asynchronous Sparse Convolutional Networks [54.094244806123235]
イベントカメラはバイオインスパイアされたセンサーで、非同期でスパースな「イベント」の形で画素ごとの明るさ変化に反応する。
同期画像のようなイベント表現で訓練されたモデルを、同じ出力を持つ非同期モデルに変換するための一般的なフレームワークを提案する。
理論的および実験的に、これは高容量同期ニューラルネットワークの計算複雑性と遅延を大幅に減少させることを示す。
論文 参考訳(メタデータ) (2020-03-20T08:39:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。