論文の概要: Large Language Model based Agent Framework for Electric Vehicle Charging Behavior Simulation
- arxiv url: http://arxiv.org/abs/2408.05233v1
- Date: Sat, 3 Aug 2024 03:52:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 04:07:11.706294
- Title: Large Language Model based Agent Framework for Electric Vehicle Charging Behavior Simulation
- Title(参考訳): 電気自動車充電挙動シミュレーションのための大規模言語モデルに基づくエージェントフレームワーク
- Authors: Junkang Feng, Chenggang Cui, Chuanlin Zhang, Zizhu Fan,
- Abstract要約: 本稿では,電気自動車(EV)の充電動作をシミュレーションするための LLM ベースのエージェントフレームワークを提案する。
課金プロセスを最適化するために、ユーザの好み、心理的特徴、環境要因を統合する。
- 参考スコア(独自算出の注目度): 1.8749305679160366
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a new LLM based agent framework for simulating electric vehicle (EV) charging behavior, integrating user preferences, psychological characteristics, and environmental factors to optimize the charging process. The framework comprises several modules, enabling sophisticated, adaptive simulations. Dynamic decision making is supported by continuous reflection and memory updates, ensuring alignment with user expectations and enhanced efficiency. The framework's ability to generate personalized user profiles and real-time decisions offers significant advancements for urban EV charging management. Future work could focus on incorporating more intricate scenarios and expanding data sources to enhance predictive accuracy and practical utility.
- Abstract(参考訳): 本稿では,電気自動車(EV)の充電動作をシミュレーションし,ユーザの嗜好,心理的特徴,環境要因を統合し,充電プロセスを最適化するための新しいLCMベースのエージェントフレームワークを提案する。
このフレームワークはいくつかのモジュールから構成されており、高度で適応的なシミュレーションを可能にする。
動的意思決定は、継続的なリフレクションとメモリ更新によってサポートされ、ユーザの期待に一致し、効率が向上する。
このフレームワークは、パーソナライズされたユーザープロファイルとリアルタイムな意思決定を生成する能力により、都市部のEV充電管理に大きな進歩をもたらす。
将来的には、より複雑なシナリオを取り入れ、予測精度と実用性を高めるためにデータソースを拡張することに重点を置くだろう。
関連論文リスト
- Coherent Hierarchical Probabilistic Forecasting of Electric Vehicle Charging Demand [3.7690784039257292]
本稿では,複数の電気自動車充電ステーション(EVCS)の階層的確率的予測問題について検討する。
各充電ステーションに対して、部分入力凸ニューラルネットワーク(PICNN)に基づくディープラーニングモデルを訓練し、日頭充電需要の条件分布を予測する。
微分凸最適化層(DCL)は、分布からサンプリングされたシナリオを再構成し、一貫性のあるシナリオを生成する。
論文 参考訳(メタデータ) (2024-11-01T03:35:04Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
運動プランナー(MP)は複雑な都市環境における安全なナビゲーションに不可欠である。
最近リリースされたMPベンチマークであるnuPlanは、クローズドループシミュレーションロジックで現実世界の駆動ログを拡張することで、この制限に対処している。
本稿では,モデル予測制御(MPC)ベースのプランナであるAdaptiveDriverを提案する。
論文 参考訳(メタデータ) (2024-06-15T18:53:45Z) - Learning and Optimization for Price-based Demand Response of Electric Vehicle Charging [0.9124662097191375]
PBDRモデリングのための新しい意思決定型エンドツーエンドフレームワークを提案する。
EV客のPBDRパターンを用いた充電ステーション運転シミュレーションにおける本手法の有効性を評価する。
論文 参考訳(メタデータ) (2024-04-16T06:39:30Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymaxは、マルチエージェントシーンにおける自動運転のための新しいデータ駆動シミュレータである。
TPU/GPUなどのハードウェアアクセラレータで完全に動作し、トレーニング用のグラフ内シミュレーションをサポートする。
我々は、一般的な模倣と強化学習アルゴリズムのスイートをベンチマークし、異なる設計決定に関するアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-10-12T20:49:15Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
現在の制御戦略と最適化アルゴリズムでは、そのほとんどはリアルタイムフィードバックから情報を受け取ることに依存している。
本稿では,システム制御のためのシステム特性を同時に構築することによる,ダイナミックな事前知識を組み込む,エンジニアフレンドリな制御戦略フレームワークを提案する。
典型的な制御戦略でシステム制御を加熱するケースでテストしたところ、我々のフレームワークは15%の省エネ性を持っていることがわかった。
論文 参考訳(メタデータ) (2023-01-23T09:07:07Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
本稿では、動的環境下で異なるEVユーザに対して最適なEV充電/放電制御戦略を開発する。
多様なユーザの行動や動的環境に適合する水平連合強化学習法(HFRL)を提案する。
シミュレーションの結果,提案したリアルタイムEV充電/放電制御戦略は,様々な要因において良好に機能することが示された。
論文 参考訳(メタデータ) (2022-10-04T08:22:46Z) - A novel MDPSO-SVR hybrid model for feature selection in electricity
consumption forecasting [0.0]
本研究では,分散粒子群最適化 (MDPSO) を特徴選択に用いた。
MDPSO-SVRモデルは、他の確立されたモデルと比較すると、2つの実世界の電力消費データセットにおいて常に最高の性能を発揮する。
論文 参考訳(メタデータ) (2022-06-14T07:50:04Z) - A Deep Learning Approach for Macroscopic Energy Consumption Prediction
with Microscopic Quality for Electric Vehicles [0.0]
本稿では,電気自動車の電力消費をマクロレベルでモデル化する機械学習手法を提案する。
エネルギー消費に影響を与えるすべての内部ダイナミクスは隠蔽されているが、集約レベルのエネルギー消費値がかなり正確に学習可能であることを示す。
このモデルは、リアルタイムの行動伝達モデルをサポートするために、POLARISトランスポーテーションシステムシミュレーションツールにデプロイされ、統合されている。
論文 参考訳(メタデータ) (2021-11-25T01:20:32Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。