論文の概要: Towards Using Machine Learning to Generatively Simulate EV Charging in Urban Areas
- arxiv url: http://arxiv.org/abs/2412.10531v2
- Date: Sat, 21 Dec 2024 19:24:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:51:41.519570
- Title: Towards Using Machine Learning to Generatively Simulate EV Charging in Urban Areas
- Title(参考訳): 都市部におけるEV充電生成のための機械学習の活用に向けて
- Authors: Marek Miltner, Jakub Zíka, Daniel Vašata, Artem Bryksa, Magda Friedjungová, Ondřej Štogl, Ram Rajagopal, Oldřich Starý,
- Abstract要約: 本研究では、限られたデータで都市部における電気自動車(EV)の充電プロファイルを予測することの課題に対処する。
我々のモデルは、ピーク電力需要と日々の負荷を予測し、充電行動に関する洞察を提供する。
- 参考スコア(独自算出の注目度): 1.1434534164449743
- License:
- Abstract: This study addresses the challenge of predicting electric vehicle (EV) charging profiles in urban locations with limited data. Utilizing a neural network architecture, we aim to uncover latent charging profiles influenced by spatio-temporal factors. Our model focuses on peak power demand and daily load shapes, providing insights into charging behavior. Our results indicate significant impacts from the type of Basic Administrative Units on predicted load curves, which contributes to the understanding and optimization of EV charging infrastructure in urban settings and allows Distribution System Operators (DSO) to more efficiently plan EV charging infrastructure expansion.
- Abstract(参考訳): 本研究では、限られたデータで都市部における電気自動車(EV)の充電プロファイルを予測することの課題に対処する。
ニューラルネットワークアーキテクチャを用いて、時空間要因の影響を受けやすい充電プロファイルを明らかにすることを目的とする。
我々のモデルは、ピーク電力需要と日々の負荷形状に焦点を当て、充電行動に関する洞察を提供する。
都市部におけるEV充電インフラの理解と最適化に寄与し,配電系統運用者(DSO)がEV充電インフラの拡張をより効率的に計画できるようにする。
関連論文リスト
- Coherent Hierarchical Probabilistic Forecasting of Electric Vehicle Charging Demand [3.7690784039257292]
本稿では,複数の電気自動車充電ステーション(EVCS)の階層的確率的予測問題について検討する。
各充電ステーションに対して、部分入力凸ニューラルネットワーク(PICNN)に基づくディープラーニングモデルを訓練し、日頭充電需要の条件分布を予測する。
微分凸最適化層(DCL)は、分布からサンプリングされたシナリオを再構成し、一貫性のあるシナリオを生成する。
論文 参考訳(メタデータ) (2024-11-01T03:35:04Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - A Data-Driven Framework for Improving Public EV Charging Infrastructure:
Modeling and Forecasting [13.950084838642228]
既存の充電インフラは、急速に増加する充電需要を維持できなくなるのではないかと考えられている。
現在、適切なQoE指標がなければ、EV充電ステーションの性能を評価するのに、オペレーターは著しく困難に直面している。
本稿では,新規かつオリジナルなQoEパフォーマンス指標の定式化を通じて,このギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2023-12-08T19:37:15Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - A physics-informed and attention-based graph learning approach for
regional electric vehicle charging demand prediction [7.441576351434805]
本稿では,特徴抽出のためのグラフと時間的注意機構の統合を実現する新しい手法を提案する。
中国深センの18,013台のEV充電杭のデータセットによる評価結果から,提案手法はPAGと呼ばれ,最先端の予測性能を達成可能であることが示された。
論文 参考訳(メタデータ) (2023-09-11T06:31:45Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
本稿では、動的環境下で異なるEVユーザに対して最適なEV充電/放電制御戦略を開発する。
多様なユーザの行動や動的環境に適合する水平連合強化学習法(HFRL)を提案する。
シミュレーションの結果,提案したリアルタイムEV充電/放電制御戦略は,様々な要因において良好に機能することが示された。
論文 参考訳(メタデータ) (2022-10-04T08:22:46Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
本稿では,将来の占有予測を生成するための時間的予測ネットワークパイプラインを提案する。
現在のSOTAと比較して、我々の手法は3秒の長い水平線での占有を予測している。
我々は、さらなる研究を支援するために、nulisに基づくグリッド占有データセットを公開します。
論文 参考訳(メタデータ) (2022-05-06T13:45:32Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Optimal Placement of Public Electric Vehicle Charging Stations Using
Deep Reinforcement Learning [0.0]
Reinforcement Learning (RL) の新たな応用により、新しい充電ステーションの最適な場所を見つけることができる。
提案するRLフレームワークを世界中の都市に適用し,充電ステーション配置を最適化する。
論文 参考訳(メタデータ) (2021-08-17T17:25:30Z) - Explaining the distribution of energy consumption at slow charging
infrastructure for electric vehicles from socio-economic data [2.1294627833637576]
本研究では,低速帯電インフラ周辺環境の動作,機能,特性を解析し,低速帯電インフラで消費される電気の分布に影響を及ぼすようなデータ中心型アプローチを開発する。
論文 参考訳(メタデータ) (2020-06-02T14:44:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。