論文の概要: ReToMe-VA: Recursive Token Merging for Video Diffusion-based Unrestricted Adversarial Attack
- arxiv url: http://arxiv.org/abs/2408.05479v1
- Date: Sat, 10 Aug 2024 08:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 18:51:22.686472
- Title: ReToMe-VA: Recursive Token Merging for Video Diffusion-based Unrestricted Adversarial Attack
- Title(参考訳): ReToMe-VA:ビデオ拡散に基づく非制限逆アタックのための再帰的トークンマージ
- Authors: Ziyi Gao, Kai Chen, Zhipeng Wei, Tingshu Mou, Jingjing Chen, Zhiyu Tan, Hao Li, Yu-Gang Jiang,
- Abstract要約: ビデオ拡散に基づく非制限アドリアック攻撃(ReToMe-VA)における再帰的トークンマージを提案する。
ReToMe-VAは、空間的非受容性を達成するために、Timestep-wise Adrial Latent Optimization (TALO)戦略を採用する。
ReToMe-VAには、ビデオフレーム間でトークンのマッチングとマージを行うRecursive Token Merging(ReToMe)メカニズムが導入されている。
- 参考スコア(独自算出の注目度): 71.2286719703198
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent diffusion-based unrestricted attacks generate imperceptible adversarial examples with high transferability compared to previous unrestricted attacks and restricted attacks. However, existing works on diffusion-based unrestricted attacks are mostly focused on images yet are seldom explored in videos. In this paper, we propose the Recursive Token Merging for Video Diffusion-based Unrestricted Adversarial Attack (ReToMe-VA), which is the first framework to generate imperceptible adversarial video clips with higher transferability. Specifically, to achieve spatial imperceptibility, ReToMe-VA adopts a Timestep-wise Adversarial Latent Optimization (TALO) strategy that optimizes perturbations in diffusion models' latent space at each denoising step. TALO offers iterative and accurate updates to generate more powerful adversarial frames. TALO can further reduce memory consumption in gradient computation. Moreover, to achieve temporal imperceptibility, ReToMe-VA introduces a Recursive Token Merging (ReToMe) mechanism by matching and merging tokens across video frames in the self-attention module, resulting in temporally consistent adversarial videos. ReToMe concurrently facilitates inter-frame interactions into the attack process, inducing more diverse and robust gradients, thus leading to better adversarial transferability. Extensive experiments demonstrate the efficacy of ReToMe-VA, particularly in surpassing state-of-the-art attacks in adversarial transferability by more than 14.16% on average.
- Abstract(参考訳): 近年の拡散型非制限攻撃は、それまでの非制限攻撃や制限攻撃と比較して高い伝達性を有する非許容逆例を生成する。
しかし、拡散ベースの無制限攻撃に関する既存の研究は、主に画像に焦点を当てているが、ビデオではほとんど調査されない。
本稿では,ビデオ拡散に基づく非制限逆数攻撃(ReToMe-VA)のための再帰的Token Mergingを提案する。
具体的には,ReToMe-VAでは,拡散モデルの潜伏空間の摂動を各復調ステップで最適化する Timestep-wise Adversarial Latent Optimization (TALO) 戦略を採用している。
TALOは、より強力な対向フレームを生成するために、反復的で正確な更新を提供する。
TALOは勾配計算におけるメモリ消費をさらに削減することができる。
さらに、ReToMe-VAは、自己認識モジュール内のビデオフレーム間でトークンをマッチングしてマージすることで、時間的に一貫した対向的なビデオを生成するRecursive Token Merging(ReToMe)機構を導入する。
ReToMeは、アタックプロセスにおけるフレーム間のインタラクションを同時に促進し、より多彩で堅牢な勾配を誘導する。
大規模な実験は、ReToMe-VAの有効性を実証しており、特に敵の移動可能性に対する最先端の攻撃を平均14.16%以上上回っている。
関連論文リスト
- Efficient Generation of Targeted and Transferable Adversarial Examples for Vision-Language Models Via Diffusion Models [17.958154849014576]
大規模視覚言語モデル(VLM)のロバスト性を評価するために、敵対的攻撃を用いることができる。
従来のトランスファーベースの敵攻撃は、高いイテレーション数と複雑なメソッド構造により、高いコストを発生させる。
本稿では, 拡散モデルを用いて, 自然, 制約のない, 対象とする対向的な例を生成するAdvDiffVLMを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:19:52Z) - Improving Adversarial Transferability by Stable Diffusion [36.97548018603747]
敵対的な例は 良心サンプルに 知覚不能な摂動を導入 予測を欺く
ディープニューラルネットワーク(Deep Neural Network, DNN)は、良性サンプルに知覚不能な摂動を導入し、予測を誤認する敵の例に影響を受けやすい。
本稿では,SDAM(Stable Diffusion Attack Method)と呼ばれる新しい攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-11-18T09:10:07Z) - IRAD: Implicit Representation-driven Image Resampling against Adversarial Attacks [16.577595936609665]
本稿では,画像再サンプリングという,敵対的攻撃に対する新たなアプローチを提案する。
画像再サンプリングは、幾何学的変換によって指定されたシーンの再調整や再レンダリングの過程をシミュレートして、離散画像を新しい画像に変換する。
本手法は,クリーンな画像の精度を維持しつつ,多様な深層モデルの様々な攻撃に対する対角的堅牢性を著しく向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T11:19:32Z) - Inter-frame Accelerate Attack against Video Interpolation Models [73.28751441626754]
我々は,対戦型攻撃をVIFモデルに適用し,対戦型モデルに対して非常に脆弱であることを示す。
本稿では,フレーム間加速攻撃(IAA)と呼ばれる新しい攻撃手法を提案する。
本手法は従来の手法と同等の攻撃性能を達成しつつ,攻撃効率を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-05-11T03:08:48Z) - Boosting the Transferability of Adversarial Attacks with Reverse
Adversarial Perturbation [32.81400759291457]
逆の例は、知覚不能な摂動を注入することで誤った予測を生じさせる。
本研究では,現実の応用への脅威から,敵対的事例の伝達可能性について検討する。
逆対向摂動(RAP)と呼ばれる新しい攻撃法を提案する。
論文 参考訳(メタデータ) (2022-10-12T07:17:33Z) - Boosting the Transferability of Video Adversarial Examples via Temporal
Translation [82.0745476838865]
敵の例は転送可能であり、現実世界のアプリケーションにおけるブラックボックス攻撃に対して実現可能である。
本稿では,一組の時間的翻訳ビデオクリップ上での対向的摂動を最適化する時間的翻訳攻撃手法を提案する。
Kinetics-400 データセットと UCF-101 データセットを用いた実験により,本手法がビデオ対向例の転送可能性を大幅に向上することを示した。
論文 参考訳(メタデータ) (2021-10-18T07:52:17Z) - Towards Robust Speech-to-Text Adversarial Attack [78.5097679815944]
本稿では,DeepSpeech,Kaldi,Lingvoなど,最先端の音声テキストシステムに対する新たな逆アルゴリズムを提案する。
本手法は, 逆最適化定式化の従来の歪み条件の拡張を開発することに基づいている。
元のサンプルと反対のサンプルの分布の差を測定するこの測定値の最小化は、正統な音声記録のサブスペースに非常に近い作成信号に寄与する。
論文 参考訳(メタデータ) (2021-03-15T01:51:41Z) - An Efficient Recurrent Adversarial Framework for Unsupervised Real-Time
Video Enhancement [132.60976158877608]
対比ビデオの例から直接学習する効率的な対比ビデオ強化フレームワークを提案する。
特に,空間的情報と時間的情報の暗黙的統合のための局所的モジュールとグローバルモジュールからなる新しい再帰的セルを導入する。
提案する設計では,フレーム間の情報伝達を効率的に行うことができ,複雑なネットワークの必要性を低減できる。
論文 参考訳(メタデータ) (2020-12-24T00:03:29Z) - MultAV: Multiplicative Adversarial Videos [71.94264837503135]
本稿では,ビデオ認識モデルに対する新たな攻撃手法であるMultAVを提案する。
MultAVは乗算によってビデオデータに摂動を課す。
実験結果から,MultAV に対する加法攻撃に対して逆向きに訓練したモデルでは,MultAV に対するロバスト性が低いことが示された。
論文 参考訳(メタデータ) (2020-09-17T04:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。