Pauli Check Sandwiching for Quantum Characterization and Error Mitigation during Runtime
- URL: http://arxiv.org/abs/2408.05565v2
- Date: Wed, 14 Aug 2024 13:24:53 GMT
- Title: Pauli Check Sandwiching for Quantum Characterization and Error Mitigation during Runtime
- Authors: Joshua Gao, Ji Liu, Alvin Gonzales, Zain H. Saleem, Nikos Hardavellas, Kaitlin N. Smith,
- Abstract summary: This work presents a novel quantum system characterization and error mitigation framework that applies Pauli check sandwiching (PCS)
PCS combined with multi-programming unlocks non-trivial fidelity improvements in quantum program outcomes.
- Score: 8.860010205263116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a novel quantum system characterization and error mitigation framework that applies Pauli check sandwiching (PCS). We motivate our work with prior art in software optimizations for quantum programs like noise-adaptive mapping and multi-programming, and we introduce the concept of PCS while emphasizing design considerations for its practical use. We show that by carefully embedding Pauli checks within a target application (i.e. a quantum circuit), we can learn quantum system noise profiles. Further, PCS combined with multi-programming unlocks non-trivial fidelity improvements in quantum program outcomes.
Related papers
- Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits [10.073911279652918]
We study the relationship between the quantum noise and the diffusion model.
We propose a novel diffusion-inspired learning approach to mitigate the quantum noise in the PQCs.
arXiv Detail & Related papers (2024-06-02T19:35:38Z) - Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
We propose a Decision Diagram-based quantum equivalence checking approach, QuBEC, that requires less latency compared to existing techniques.
Our proposed methodology reduces verification time on certain benchmark circuits by up to $271.49 times$.
arXiv Detail & Related papers (2023-09-19T16:12:37Z) - Development of Zero-Noise Extrapolated Projection Based Quantum
Algorithm for Accurate Evaluation of Molecular Energetics in Noisy Quantum
Devices [0.0]
We develop an optimal framework for introducing Zero Noise Extrapolation (ZNE) in the nonlinear iterative procedure that outlines the Projective Quantum Eigensolver (PQE)
We perform a detailed analysis of how various components involved in ZNE-PQE affect the accuracy and efficiency of the reciprocated energy convergence trajectory.
This approach is expected to facilitate practical applications of quantum computing in fields related to molecular sciences.
arXiv Detail & Related papers (2023-06-26T10:08:35Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Improving readout in quantum simulations with repetition codes [0.0]
We use repetition codes as scalable schemes with the potential to provide more accurate solutions to problems of interest in quantum chemistry and physics.
We showcase our approach in multiple IBM Quantum devices and validate our results using a simplified theoretical noise model.
arXiv Detail & Related papers (2021-05-27T18:01:05Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Sampling Overhead Analysis of Quantum Error Mitigation: Uncoded vs.
Coded Systems [69.33243249411113]
We show that Pauli errors incur the lowest sampling overhead among a large class of realistic quantum channels.
We conceive a scheme amalgamating QEM with quantum channel coding, and analyse its sampling overhead reduction compared to pure QEM.
arXiv Detail & Related papers (2020-12-15T15:51:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.