SMILES-Mamba: Chemical Mamba Foundation Models for Drug ADMET Prediction
- URL: http://arxiv.org/abs/2408.05696v1
- Date: Sun, 11 Aug 2024 04:53:12 GMT
- Title: SMILES-Mamba: Chemical Mamba Foundation Models for Drug ADMET Prediction
- Authors: Bohao Xu, Yingzhou Lu, Chenhao Li, Ling Yue, Xiao Wang, Nan Hao, Tianfan Fu, Jim Chen,
- Abstract summary: Predicting the absorption, distribution, metabolism, excretion, and toxicity of small-molecule drugs is critical for ensuring safety and efficacy.
We propose a two-stage model that leverages both unlabeled and labeled data through a combination of self-supervised pretraining and fine-tuning strategies.
Our results demonstrate that SMILES-Mamba exhibits competitive performance across 22 ADMET datasets, achieving the highest score in 14 tasks.
- Score: 16.189335444981353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In drug discovery, predicting the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of small-molecule drugs is critical for ensuring safety and efficacy. However, the process of accurately predicting these properties is often resource-intensive and requires extensive experimental data. To address this challenge, we propose SMILES-Mamba, a two-stage model that leverages both unlabeled and labeled data through a combination of self-supervised pretraining and fine-tuning strategies. The model first pre-trains on a large corpus of unlabeled SMILES strings to capture the underlying chemical structure and relationships, before being fine-tuned on smaller, labeled datasets specific to ADMET tasks. Our results demonstrate that SMILES-Mamba exhibits competitive performance across 22 ADMET datasets, achieving the highest score in 14 tasks, highlighting the potential of self-supervised learning in improving molecular property prediction. This approach not only enhances prediction accuracy but also reduces the dependence on large, labeled datasets, offering a promising direction for future research in drug discovery.
Related papers
- GramSeq-DTA: A grammar-based drug-target affinity prediction approach fusing gene expression information [1.2289361708127877]
We propose GramSeq-DTA, which integrates chemical perturbation information with the structural information of drugs and targets.
Our approach outperforms the current state-of-the-art DTA prediction models when validated on widely used DTA datasets.
arXiv Detail & Related papers (2024-11-03T03:17:09Z) - Accelerating Drug Safety Assessment using Bidirectional-LSTM for SMILES Data [0.0]
Bi-Directional Long Short Term Memory (BiLSTM) is a variant of Recurrent Neural Network (RNN) that processes input molecular sequences.
The proposed work aims to understand the sequential patterns encoded in the SMILES strings, which are then utilised for predicting the toxicity of the molecules.
arXiv Detail & Related papers (2024-07-08T18:12:11Z) - Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular Property Prediction: A Systematic Survey [22.73437302209673]
We review and quantitatively analyze recent deep learning methods based on various benchmarks.
We find that integrating molecular information significantly improves molecular property prediction (MPP) for both regression and classification tasks.
We also discover that enriching 2D graphs with 1D SMILES boosts multi-modal learning performance for regression tasks by up to 9.1%, and augmenting 2D graphs with 3D information increases performance for classification tasks by up to 13.2%.
arXiv Detail & Related papers (2024-02-11T17:29:58Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - Taming Overconfident Prediction on Unlabeled Data from Hindsight [50.9088560433925]
Minimizing prediction uncertainty on unlabeled data is a key factor to achieve good performance in semi-supervised learning.
This paper proposes a dual mechanism, named ADaptive Sharpening (ADS), which first applies a soft-threshold to adaptively mask out determinate and negligible predictions.
ADS significantly improves the state-of-the-art SSL methods by making it a plug-in.
arXiv Detail & Related papers (2021-12-15T15:17:02Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.