Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular Property Prediction: A Systematic Survey
- URL: http://arxiv.org/abs/2402.07249v3
- Date: Fri, 28 Jun 2024 02:32:03 GMT
- Title: Impact of Domain Knowledge and Multi-Modality on Intelligent Molecular Property Prediction: A Systematic Survey
- Authors: Taojie Kuang, Pengfei Liu, Zhixiang Ren,
- Abstract summary: We review and quantitatively analyze recent deep learning methods based on various benchmarks.
We find that integrating molecular information significantly improves molecular property prediction (MPP) for both regression and classification tasks.
We also discover that enriching 2D graphs with 1D SMILES boosts multi-modal learning performance for regression tasks by up to 9.1%, and augmenting 2D graphs with 3D information increases performance for classification tasks by up to 13.2%.
- Score: 22.73437302209673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The precise prediction of molecular properties is essential for advancements in drug development, particularly in virtual screening and compound optimization. The recent introduction of numerous deep learning-based methods has shown remarkable potential in enhancing molecular property prediction (MPP), especially improving accuracy and insights into molecular structures. Yet, two critical questions arise: does the integration of domain knowledge augment the accuracy of molecular property prediction and does employing multi-modal data fusion yield more precise results than unique data source methods? To explore these matters, we comprehensively review and quantitatively analyze recent deep learning methods based on various benchmarks. We discover that integrating molecular information significantly improves molecular property prediction (MPP) for both regression and classification tasks. Specifically, regression improvements, measured by reductions in root mean square error (RMSE), are up to 4.0%, while classification enhancements, measured by the area under the receiver operating characteristic curve (ROC-AUC), are up to 1.7%. We also discover that enriching 2D graphs with 1D SMILES boosts multi-modal learning performance for regression tasks by up to 9.1%, and augmenting 2D graphs with 3D information increases performance for classification tasks by up to 13.2%, with both enhancements measured using ROC-AUC. The two consolidated insights offer crucial guidance for future advancements in drug discovery.
Related papers
- YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - TwinBooster: Synergising Large Language Models with Barlow Twins and
Gradient Boosting for Enhanced Molecular Property Prediction [0.0]
In this study, we use a fine-tuned large language model to integrate biological assays based on their textual information.
This architecture uses both assay information and molecular fingerprints to extract the true molecular information.
TwinBooster enables the prediction of properties of unseen bioassays and molecules by providing state-of-the-art zero-shot learning tasks.
arXiv Detail & Related papers (2024-01-09T10:36:20Z) - Objective-Agnostic Enhancement of Molecule Properties via Multi-Stage
VAE [1.3597551064547502]
Variational autoencoder (VAE) is a popular method for drug discovery and various architectures and pipelines have been proposed to improve its performance.
VAE approaches are known to suffer from poor manifold recovery when the data lie on a low-dimensional manifold embedded in a higher dimensional ambient space.
In this paper, we explore applying a multi-stage VAE approach, that can improve manifold recovery on a synthetic dataset, to the field of drug discovery.
arXiv Detail & Related papers (2023-08-24T20:22:22Z) - Machine Learning Small Molecule Properties in Drug Discovery [44.62264781248437]
We review a wide range of properties, including binding affinities, solubility, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
We discuss existing popular descriptors and embeddings, such as chemical fingerprints and graph-based neural networks.
Finally, techniques to provide an understanding of model predictions, especially for critical decision-making in drug discovery are assessed.
arXiv Detail & Related papers (2023-08-02T22:18:41Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
We propose QMO, a generic query-based molecule optimization framework.
QMO improves the desired properties of an input molecule based on efficient queries.
We show that QMO outperforms existing methods in the benchmark tasks of optimizing small organic molecules.
arXiv Detail & Related papers (2020-11-03T18:51:18Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z) - Assessing Graph-based Deep Learning Models for Predicting Flash Point [52.931492216239995]
Graph-based deep learning (GBDL) models were implemented in predicting flash point for the first time.
Average R2 and Mean Absolute Error (MAE) scores of MPNN are, respectively, 2.3% lower and 2.0 K higher than previous comparable studies.
arXiv Detail & Related papers (2020-02-26T06:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.