MuCoS: Efficient Drug Target Discovery via Multi Context Aware Sampling in Knowledge Graphs
- URL: http://arxiv.org/abs/2503.08075v1
- Date: Tue, 11 Mar 2025 06:08:42 GMT
- Title: MuCoS: Efficient Drug Target Discovery via Multi Context Aware Sampling in Knowledge Graphs
- Authors: Haji Gul, Abdul Ghani Naim, Ajaz Ahmad Bhat,
- Abstract summary: Multi Context Aware Sampling (MuCoS) is a novel framework that prioritizes high-density neighbours to capture salient structural patterns.<n>Experiments on the KEGG50k dataset demonstrate that MuCoS outperforms state-of-the-art baselines.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate prediction of drug target interactions is critical for accelerating drug discovery and elucidating complex biological mechanisms. In this work, we frame drug target prediction as a link prediction task on heterogeneous biomedical knowledge graphs (KG) that integrate drugs, proteins, diseases, pathways, and other relevant entities. Conventional KG embedding methods such as TransE and ComplEx SE are hindered by their reliance on computationally intensive negative sampling and their limited generalization to unseen drug target pairs. To address these challenges, we propose Multi Context Aware Sampling (MuCoS), a novel framework that prioritizes high-density neighbours to capture salient structural patterns and integrates these with contextual embeddings derived from BERT. By unifying structural and textual modalities and selectively sampling highly informative patterns, MuCoS circumvents the need for negative sampling, significantly reducing computational overhead while enhancing predictive accuracy for novel drug target associations and drug targets. Extensive experiments on the KEGG50k dataset demonstrate that MuCoS outperforms state-of-the-art baselines, achieving up to a 13\% improvement in mean reciprocal rank (MRR) in predicting any relation in the dataset and a 6\% improvement in dedicated drug target relation prediction.
Related papers
- MuCoS: Efficient Drug-Target Prediction through Multi-Context-Aware Sampling [0.0]
Multi-Context-Aware Sampling (MuCoS) is an efficient and positively accurate method for drug-target prediction.<n>MuCoS avoids the need for negative triplet sampling, reducing computation while improving performance over unseen entities and relations.
arXiv Detail & Related papers (2025-02-25T02:27:32Z) - GramSeq-DTA: A grammar-based drug-target affinity prediction approach fusing gene expression information [1.2289361708127877]
We propose GramSeq-DTA, which integrates chemical perturbation information with the structural information of drugs and targets.
Our approach outperforms the current state-of-the-art DTA prediction models when validated on widely used DTA datasets.
arXiv Detail & Related papers (2024-11-03T03:17:09Z) - SMILES-Mamba: Chemical Mamba Foundation Models for Drug ADMET Prediction [16.189335444981353]
Predicting the absorption, distribution, metabolism, excretion, and toxicity of small-molecule drugs is critical for ensuring safety and efficacy.
We propose a two-stage model that leverages both unlabeled and labeled data through a combination of self-supervised pretraining and fine-tuning strategies.
Our results demonstrate that SMILES-Mamba exhibits competitive performance across 22 ADMET datasets, achieving the highest score in 14 tasks.
arXiv Detail & Related papers (2024-08-11T04:53:12Z) - Learning to Denoise Biomedical Knowledge Graph for Robust Molecular Interaction Prediction [50.7901190642594]
We propose BioKDN (Biomedical Knowledge Graph Denoising Network) for robust molecular interaction prediction.
BioKDN refines the reliable structure of local subgraphs by denoising noisy links in a learnable manner.
It maintains consistent and robust semantics by smoothing relations around the target interaction.
arXiv Detail & Related papers (2023-12-09T07:08:00Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
deep learning has become an important tool for rapid screening of billions of molecules in silico for potential hits containing desired chemical features.
Despite its importance, substantial challenges persist in training these models, such as severe class imbalance, high decision thresholds, and lack of ground truth labels in some datasets.
We argue in favor of directly optimizing the receiver operating characteristic (ROC) in such cases, due to its robustness to class imbalance.
arXiv Detail & Related papers (2020-06-25T08:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.