論文の概要: DeepAir: A Multi-Agent Deep Reinforcement Learning Based Scheme for an Unknown User Location Problem
- arxiv url: http://arxiv.org/abs/2408.05712v1
- Date: Sun, 11 Aug 2024 07:28:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 15:57:51.953140
- Title: DeepAir: A Multi-Agent Deep Reinforcement Learning Based Scheme for an Unknown User Location Problem
- Title(参考訳): DeepAir: 未知のユーザ位置問題に対するマルチエージェントの深層強化学習型スキーム
- Authors: Baris Yamansavascilar, Atay Ozgovde, Cem Ersoy,
- Abstract要約: 無人航空機(UAV)の様々な環境への展開は、ネットワークパラダイムに対する様々な解決策と戦略を提供してきた。
既存の問題の1つは、インフラストラクチャレス環境における未知のユーザロケーションである。
本研究では,新しい深層強化学習手法であるDeepAirを提案する。
- 参考スコア(独自算出の注目度): 6.185645393091031
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of unmanned aerial vehicles (UAVs) in many different settings has provided various solutions and strategies for networking paradigms. Therefore, it reduces the complexity of the developments for the existing problems, which otherwise require more sophisticated approaches. One of those existing problems is the unknown user locations in an infrastructure-less environment in which users cannot connect to any communication device or computation-providing server, which is essential to task offloading in order to achieve the required quality of service (QoS). Therefore, in this study, we investigate this problem thoroughly and propose a novel deep reinforcement learning (DRL) based scheme, DeepAir. DeepAir considers all of the necessary steps including sensing, localization, resource allocation, and multi-access edge computing (MEC) to achieve QoS requirements for the offloaded tasks without violating the maximum tolerable delay. To this end, we use two types of UAVs including detector UAVs, and serving UAVs. We utilize detector UAVs as DRL agents which ensure sensing, localization, and resource allocation. On the other hand, we utilize serving UAVs to provide MEC features. Our experiments show that DeepAir provides a high task success rate by deploying fewer detector UAVs in the environment, which includes different numbers of users and user attraction points, compared to benchmark methods.
- Abstract(参考訳): 無人航空機(UAV)の様々な環境への展開は、ネットワークパラダイムに対する様々な解決策と戦略を提供してきた。
したがって、既存の問題の開発の複雑さを減らし、それ以外はより洗練されたアプローチを必要とする。
既存の問題の1つは、要求される品質のサービス(QoS)を達成するためにタスクオフロードに不可欠である、通信デバイスや計算提供サーバに接続できないインフラストラクチャレス環境における未知のユーザロケーションである。
そこで本研究では,この問題を徹底的に検討し,新しい深層強化学習方式であるDeepAirを提案する。
DeepAirは、最大耐久遅延に違反することなく、オフロードタスクのQoS要求を達成するために、センシング、ローカライゼーション、リソース割り当て、マルチアクセスエッジコンピューティング(MEC)を含む必要なステップをすべて検討している。
この目的のために、検出器UAVを含む2種類のUAVを使用し、UAVを提供する。
我々は、検知器UAVをDRLエージェントとして利用し、センシング、ローカライゼーション、資源割り当てを確実にする。
一方、UAVを利用してMEC機能を提供しています。
実験の結果,DeepAirは,ユーザ数やユーザアトラクションポイントの異なる環境にUAVを配置することで,ベンチマーク手法と比較して高いタスク成功率を提供することがわかった。
関連論文リスト
- DNN Task Assignment in UAV Networks: A Generative AI Enhanced Multi-Agent Reinforcement Learning Approach [16.139481340656552]
本稿では,マルチエージェント強化学習(MARL)と生成拡散モデル(GDM)を組み合わせた共同手法を提案する。
第2段階では,GDMのリバース・デノナイズ・プロセスを利用して,マルチエージェント・ディープ・Deep Deterministic Policy gradient(MADDPG)におけるアクタネットワークを置き換える新しいDNNタスク割当アルゴリズム(GDM-MADDPG)を導入する。
シミュレーションの結果,提案アルゴリズムは,経路計画,情報化時代(AoI),エネルギー消費,タスク負荷分散の観点から,ベンチマークに比較して良好な性能を示した。
論文 参考訳(メタデータ) (2024-11-13T02:41:02Z) - Multi-UAV Multi-RIS QoS-Aware Aerial Communication Systems using DRL and PSO [34.951735976771765]
無人航空機(UAV)は、地上の利用者に無線サービスを提供する学術・産業の研究者の注目を集めている。
UAVの限られたリソースは、そのようなアプリケーションにUAVを採用する上での課題を引き起こす可能性がある。
システムモデルでは,地域をナビゲートするUAVスワムを考慮し,RISをサポートした地上ユーザへの無線通信により,UAVのカバレッジを向上させる。
論文 参考訳(メタデータ) (2024-06-16T17:53:56Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供する。
本稿では,地上BSからデータオフロードを行うために,複数のUAVを効率的に利用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T12:36:08Z) - AI-based Radio and Computing Resource Allocation and Path Planning in
NOMA NTNs: AoI Minimization under CSI Uncertainty [23.29963717212139]
高高度プラットフォーム(HAP)と無人航空機(UAV)からなる階層型空中コンピューティングフレームワークを開発する。
タスクスケジューリングは平均AoIを大幅に削減する。
電力割り当ては全ユーザに対して全送信電力を使用する場合と比較して平均AoIに限界効果があることが示されている。
論文 参考訳(メタデータ) (2023-05-01T11:52:15Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z) - Optimization for Master-UAV-powered Auxiliary-Aerial-IRS-assisted IoT
Networks: An Option-based Multi-agent Hierarchical Deep Reinforcement
Learning Approach [56.84948632954274]
本稿では,無人航空機(MUAV)搭載のIoT(Internet of Things)ネットワークについて検討する。
本稿では、インテリジェント反射面(IRS)を備えた充電可能な補助UAV(AUAV)を用いて、MUAVからの通信信号を強化することを提案する。
提案モデルでは,IoTネットワークの蓄積スループットを最大化するために,これらのエネルギー制限されたUAVの最適協調戦略について検討する。
論文 参考訳(メタデータ) (2021-12-20T15:45:28Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - Efficient Real-Time Image Recognition Using Collaborative Swarm of UAVs
and Convolutional Networks [9.449650062296824]
本稿では,画像の分類を行うリソース制約付きUAV群に推論要求を分散する戦略を提案する。
画像の取得と最終的な決定の待ち時間を最小限に抑える最適化問題としてモデルを定式化する。
私たちは、利用可能なUAV間で最高のレイテンシを提供するレイヤ配置戦略を見つけるために、オンラインソリューション、すなわちDistInferenceを導入します。
論文 参考訳(メタデータ) (2021-07-09T19:47:02Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Multi-Agent Deep Reinforcement Learning Based Trajectory Planning for
Multi-UAV Assisted Mobile Edge Computing [99.27205900403578]
無人航空機(UAV)支援移動エッジコンピューティング(MEC)フレームワークを提案する。
我々は,全ユーザ機器(UE)の地理的公正性と,各UAVのUE負荷の公平性を共同で最適化することを目的としている。
提案手法は他の従来のアルゴリズムよりもかなり性能が高いことを示す。
論文 参考訳(メタデータ) (2020-09-23T17:44:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。