Personalized Federated Learning for improving radar based precipitation nowcasting on heterogeneous areas
- URL: http://arxiv.org/abs/2408.05761v1
- Date: Sun, 11 Aug 2024 12:46:55 GMT
- Title: Personalized Federated Learning for improving radar based precipitation nowcasting on heterogeneous areas
- Authors: Judith Sáinz-Pardo Díaz, María Castrillo, Juraj Bartok, Ignacio Heredia Cachá, Irina Malkin Ondík, Ivan Martynovskyi, Khadijeh Alibabaei, Lisana Berberi, Valentin Kozlov, Álvaro López García,
- Abstract summary: This work addresses the applicability of a personalized federated learning architecture, which has been called adapFL, on distributed weather radar images.
The results obtained with adapFL are analyzed in each zone, as well as in a central area covering part of the surface of each of the previously distributed areas.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing generation of data in different areas of life, such as the environment, highlights the need to explore new techniques for processing and exploiting data for useful purposes. In this context, artificial intelligence techniques, especially through deep learning models, are key tools to be used on the large amount of data that can be obtained, for example, from weather radars. In many cases, the information collected by these radars is not open, or belongs to different institutions, thus needing to deal with the distributed nature of this data. In this work, the applicability of a personalized federated learning architecture, which has been called adapFL, on distributed weather radar images is addressed. To this end, given a single available radar covering 400 km in diameter, the captured images are divided in such a way that they are disjointly distributed into four different federated clients. The results obtained with adapFL are analyzed in each zone, as well as in a central area covering part of the surface of each of the previously distributed areas. The ultimate goal of this work is to study the generalization capability of this type of learning technique for its extrapolation to use cases in which a representative number of radars is available, whose data can not be centralized due to technical, legal or administrative concerns. The results of this preliminary study indicate that the performance obtained in each zone with the adapFL approach allows improving the results of the federated learning approach, the individual deep learning models and the classical Continuity Tracking Radar Echoes by Correlation approach.
Related papers
- Radio Map Prediction from Aerial Images and Application to Coverage Optimization [46.870065000932016]
We focus on predicting path loss radio maps using convolutional neural networks.
We show that state-of-the-art models developed for existing radio map datasets can be effectively adapted to this task.
We introduce a new model that slightly exceeds the performance of the present state-of-the-art with reduced complexity.
arXiv Detail & Related papers (2024-10-07T09:19:20Z) - MUFASA: Multi-View Fusion and Adaptation Network with Spatial Awareness for Radar Object Detection [3.1212590312985986]
sparsity of radar point clouds poses challenges in achieving precise object detection.
This paper introduces a comprehensive feature extraction method for radar point clouds.
We achieve state-of-the-art results among radar-based methods on the VoD dataset with the mAP of 50.24%.
arXiv Detail & Related papers (2024-08-01T13:52:18Z) - Leveraging Self-Supervised Instance Contrastive Learning for Radar
Object Detection [7.728838099011661]
This paper presents RiCL, an instance contrastive learning framework to pre-train radar object detectors.
We aim to pre-train an object detector's backbone, head and neck to learn with fewer data.
arXiv Detail & Related papers (2024-02-13T12:53:33Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
We release a dataset of simulated path loss radio maps together with realistic city maps from real-world locations and aerial images from open datasources.
Initial experiments regarding model architectures, input feature design and estimation of radio maps from aerial images are presented.
arXiv Detail & Related papers (2024-01-12T14:56:45Z) - Improving Few-Shot Generalization by Exploring and Exploiting Auxiliary
Data [100.33096338195723]
We focus on Few-shot Learning with Auxiliary Data (FLAD)
FLAD assumes access to auxiliary data during few-shot learning in hopes of improving generalization.
We propose two algorithms -- EXP3-FLAD and UCB1-FLAD -- and compare them with prior FLAD methods that either explore or exploit.
arXiv Detail & Related papers (2023-02-01T18:59:36Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
We propose a CNN based architecture enhanced with multiple branches formed by radial basis function (RBF) units.
RBF units capture local patterns shared by similar instances using an intermediate representation.
We show it is the incorporation of local information what makes the proposed model competitive.
arXiv Detail & Related papers (2021-09-07T21:05:56Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z) - SpaceNet 6: Multi-Sensor All Weather Mapping Dataset [13.715388432549373]
We present an open Multi-Sensor All Weather Mapping (MSAW) dataset and challenge.
MSAW covers 120 km2 over multiple overlapping collects and is annotated with over 48,000 unique building footprints labels.
We present a baseline and benchmark for building footprint extraction with SAR data and find that state-of-the-art segmentation models pre-trained on optical data, and then trained on SAR.
arXiv Detail & Related papers (2020-04-14T13:43:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.