論文の概要: LI-TTA: Language Informed Test-Time Adaptation for Automatic Speech Recognition
- arxiv url: http://arxiv.org/abs/2408.05769v1
- Date: Sun, 11 Aug 2024 13:19:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 15:37:52.226907
- Title: LI-TTA: Language Informed Test-Time Adaptation for Automatic Speech Recognition
- Title(参考訳): LI-TTA:自動音声認識のための言語インフォームドテスト時間適応
- Authors: Eunseop Yoon, Hee Suk Yoon, John Harvill, Mark Hasegawa-Johnson, Chang D. Yoo,
- Abstract要約: TTA(Test-Time Adaptation)は、ドメインシフト問題に対する重要な解決策として登場した。
言語インフォームドテスト時間適応(Language Informed Test-Time Adaptation, LI-TTA)を提案する。
- 参考スコア(独自算出の注目度): 43.19328760778868
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-Time Adaptation (TTA) has emerged as a crucial solution to the domain shift challenge, wherein the target environment diverges from the original training environment. A prime exemplification is TTA for Automatic Speech Recognition (ASR), which enhances model performance by leveraging output prediction entropy minimization as a self-supervision signal. However, a key limitation of this self-supervision lies in its primary focus on acoustic features, with minimal attention to the linguistic properties of the input. To address this gap, we propose Language Informed Test-Time Adaptation (LI-TTA), which incorporates linguistic insights during TTA for ASR. LI-TTA integrates corrections from an external language model to merge linguistic with acoustic information by minimizing the CTC loss from the correction alongside the standard TTA loss. With extensive experiments, we show that LI-TTA effectively improves the performance of TTA for ASR in various distribution shift situations.
- Abstract(参考訳): TTA(Test-Time Adaptation)は、ドメインシフトの問題に対する重要な解決策として現れ、ターゲット環境が元のトレーニング環境から分離する。
素例は、自己超越信号として出力予測エントロピー最小化を活用することにより、モデル性能を向上させる自動音声認識(ASR)のためのTTAである。
しかし、この自己超越の鍵となる限界は、入力の言語的特性に最小限の注意を払って、音響的特徴に焦点をあてることにある。
このギャップに対処するため,言語インフォームドテスト時間適応(Language Informed Test-Time Adaptation, LI-TTA)を提案する。
LI-TTAは、外部言語モデルからの補正を統合し、標準のTTA損失と並行して補正によるCTC損失を最小化することにより、言語情報と音響情報とをマージする。
LI-TTAは,様々な分散シフト状況において,ASRにおけるTTAの性能を効果的に向上することを示す。
関連論文リスト
- Temporal Order Preserved Optimal Transport-based Cross-modal Knowledge Transfer Learning for ASR [36.250914527327005]
事前訓練された言語モデルから音響モデルに言語知識を移すことにより,音声認識の性能を大幅に向上させることが示されている。
ASRのための時間順序保存OT(TOT)に基づくクロスモーダルアライメント・アンド・ナレッジ・トランスファー(CAKT)を提案する。
論文 参考訳(メタデータ) (2024-09-03T19:11:15Z) - An Initial Investigation of Language Adaptation for TTS Systems under Low-resource Scenarios [76.11409260727459]
本稿では,最近のSSLベースの多言語TSシステムであるZMM-TTSの言語適応性について検討する。
本研究では,事前学習言語と対象言語との音声学的な類似性が,対象言語の適応性能に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2024-06-13T08:16:52Z) - Self-supervised Adaptive Pre-training of Multilingual Speech Models for
Language and Dialect Identification [19.893213508284813]
目標領域や下流タスクの言語に事前学習モデルを適用するために,自己教師付き適応型事前学習を提案する。
SPTはFLEURSベンチマークのXLSR性能を向上し、表現不足言語では40.1%まで向上することを示した。
論文 参考訳(メタデータ) (2023-12-12T14:58:08Z) - Parameter-Efficient Learning for Text-to-Speech Accent Adaptation [58.356667204518985]
本稿では、テキスト音声(TTS)のための低リソースアクセント適応を開発するためのパラメータ効率学習(PEL)を提案する。
冷凍前訓練TSモデルからの資源効率適応は、元のトレーニング可能なパラメータの1.2%から0.8%しか使用していない。
実験結果から,提案手法はパラメータ効率の高いデコーダの微調整により,自然度と競合できることがわかった。
論文 参考訳(メタデータ) (2023-05-18T22:02:59Z) - Code-Switching Text Generation and Injection in Mandarin-English ASR [57.57570417273262]
業界で広く使われているストリーミングモデルTransformer-Transducer(T-T)の性能向上のためのテキスト生成とインジェクションについて検討する。
まず、コードスイッチングテキストデータを生成し、テキスト-to-Speech(TTS)変換または暗黙的に音声とテキストの潜在空間を結び付けることによって、T-Tモデルに生成されたテキストを明示的に注入する戦略を提案する。
実際のマンダリン・イングリッシュ音声の1,800時間を含むデータセットを用いて訓練したT-Tモデルの実験結果から,生成したコードスイッチングテキストを注入する手法により,T-Tモデルの性能が著しく向上することが示された。
論文 参考訳(メタデータ) (2023-03-20T09:13:27Z) - Using External Off-Policy Speech-To-Text Mappings in Contextual
End-To-End Automated Speech Recognition [19.489794740679024]
本稿では,外部知識の活用の可能性について検討する。
提案手法では,音声の音声埋め込みと意味的テキスト埋め込みを併用して,ASRに偏りを生じさせる。
LibiriSpeechと社内音声アシスタント/検索データセットの実験により、提案手法により、最大1KのGPU時間でドメイン適応時間を短縮できることが示された。
論文 参考訳(メタデータ) (2023-01-06T22:32:50Z) - Cross-Utterance Conditioned VAE for Non-Autoregressive Text-to-Speech [27.84124625934247]
各音素に対する潜在韻律特徴の後方確率分布を推定するために,発話条件付きVAEを提案する。
CUC-VAEは、発話情報に基づいて、発話固有の事前分布からサンプリングすることができる。
LJ-Speech と LibriTTS のデータによる実験結果から,提案した CUC-VAE TTS システムは自然性や韻律の多様性を向上することが示された。
論文 参考訳(メタデータ) (2022-05-09T08:39:53Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptationは、ソースドメインでトレーニングされたモデルに適応して、テストサンプルの予測を改善することを目的としている。
単一発話テスト時間適応 (SUTA) は音声領域における最初のTTA研究である。
論文 参考訳(メタデータ) (2022-03-27T06:38:39Z) - ATCSpeechNet: A multilingual end-to-end speech recognition framework for
air traffic control systems [15.527854608553824]
ATCSpeechNetは、航空交通制御システムにおけるコミュニケーション音声を人間可読テキストに変換する問題に取り組むために提案されている。
特徴工学や辞書を使わずに、音声波形を直接テキストに変換するエンドツーエンドのパラダイムが開発されている。
ATCSpeech corpusの実験結果から,非常に小さなラベル付きコーパスを用いて,提案手法が高い性能を実現することが示された。
論文 参考訳(メタデータ) (2021-02-17T02:27:09Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。