An End-to-End Model for Time Series Classification In the Presence of Missing Values
- URL: http://arxiv.org/abs/2408.05849v1
- Date: Sun, 11 Aug 2024 19:39:12 GMT
- Title: An End-to-End Model for Time Series Classification In the Presence of Missing Values
- Authors: Pengshuai Yao, Mengna Liu, Xu Cheng, Fan Shi, Huan Li, Xiufeng Liu, Shengyong Chen,
- Abstract summary: Time series classification with missing data is a prevalent issue in time series analysis.
This study proposes an end-to-end neural network that unifies data imputation and representation learning within a single framework.
- Score: 25.129396459385873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series classification with missing data is a prevalent issue in time series analysis, as temporal data often contain missing values in practical applications. The traditional two-stage approach, which handles imputation and classification separately, can result in sub-optimal performance as label information is not utilized in the imputation process. On the other hand, a one-stage approach can learn features under missing information, but feature representation is limited as imputed errors are propagated in the classification process. To overcome these challenges, this study proposes an end-to-end neural network that unifies data imputation and representation learning within a single framework, allowing the imputation process to take advantage of label information. Differing from previous methods, our approach places less emphasis on the accuracy of imputation data and instead prioritizes classification performance. A specifically designed multi-scale feature learning module is implemented to extract useful information from the noise-imputation data. The proposed model is evaluated on 68 univariate time series datasets from the UCR archive, as well as a multivariate time series dataset with various missing data ratios and 4 real-world datasets with missing information. The results indicate that the proposed model outperforms state-of-the-art approaches for incomplete time series classification, particularly in scenarios with high levels of missing data.
Related papers
- Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
We show that training amortized models with noisy labels is inexpensive and surprisingly effective.
This approach significantly accelerates several feature attribution and data valuation methods, often yielding an order of magnitude speedup over existing approaches.
arXiv Detail & Related papers (2024-01-29T03:42:37Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Probabilistic Imputation for Time-series Classification with Missing
Data [17.956329906475084]
We propose a novel framework for classification with time series data with missing values.
Our deep generative model part is trained to impute the missing values in multiple plausible ways.
The classifier part takes the time series data along with the imputed missing values and classifies signals.
arXiv Detail & Related papers (2023-08-13T10:04:13Z) - Few-Shot Forecasting of Time-Series with Heterogeneous Channels [4.635820333232681]
We develop a model composed of permutation-invariant deep set-blocks which incorporate a temporal embedding.
We show through experiments that our model provides a good generalization, outperforming baselines carried over from simpler scenarios.
arXiv Detail & Related papers (2022-04-07T14:02:15Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Multivariate Time Series Imputation by Graph Neural Networks [13.308026049048717]
We introduce a graph neural network architecture, named GRIL, which aims at reconstructing missing data in different channels of a multivariate time series.
Preliminary results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks.
arXiv Detail & Related papers (2021-07-31T17:47:10Z) - Voice2Series: Reprogramming Acoustic Models for Time Series
Classification [65.94154001167608]
Voice2Series is a novel end-to-end approach that reprograms acoustic models for time series classification.
We show that V2S either outperforms or is tied with state-of-the-art methods on 20 tasks, and improves their average accuracy by 1.84%.
arXiv Detail & Related papers (2021-06-17T07:59:15Z) - Deep Time Series Models for Scarce Data [8.673181404172963]
Time series data have grown at an explosive rate in numerous domains and have stimulated a surge of time series modeling research.
Data scarcity is a universal issue that occurs in a vast range of data analytics problems.
arXiv Detail & Related papers (2021-03-16T22:16:54Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
In finance, imputation of missing returns may be applied prior to training a portfolio optimization model.
There is an inherent trade-off between the look-ahead-bias of using the full data set for imputation and the larger variance in the imputation from using only the training data.
We propose a Bayesian posterior consensus distribution which optimally controls the variance and look-ahead-bias trade-off in the imputation.
arXiv Detail & Related papers (2021-02-25T09:05:35Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z) - Time Series Data Imputation: A Survey on Deep Learning Approaches [4.4458738910060775]
Time series data imputation is a well-studied problem with different categories of methods.
Time series methods based on deep learning have made progress with the usage of models like RNN.
We will review and discuss their model architectures, their pros and cons as well as their effects to show the development of the time series imputation methods.
arXiv Detail & Related papers (2020-11-23T11:57:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.