論文の概要: Scalable recommender system based on factor analysis
- arxiv url: http://arxiv.org/abs/2408.05896v1
- Date: Mon, 12 Aug 2024 02:18:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 17:51:36.134667
- Title: Scalable recommender system based on factor analysis
- Title(参考訳): 因子分析に基づくスケーラブルレコメンデータシステム
- Authors: Disha Ghandwani, Trevor Hastie,
- Abstract要約: 本稿では,確率効果モデルと因子分析に着目し,レコメンデータシステムの統計モデルについて検討する。
ランダム・スロープを含むランダム・エフェクト・モデルを拡張し、ユーザやアイテム間で異なる共変量効果のキャプチャを可能にする。
また、リコメンデータシステムにおける因子分析の利用、特に不完全データの設定について検討する。
- 参考スコア(独自算出の注目度): 43.859366451674155
- License:
- Abstract: Recommender systems have become crucial in the modern digital landscape, where personalized content, products, and services are essential for enhancing user experience. This paper explores statistical models for recommender systems, focusing on crossed random effects models and factor analysis. We extend the crossed random effects model to include random slopes, enabling the capture of varying covariate effects among users and items. Additionally, we investigate the use of factor analysis in recommender systems, particularly for settings with incomplete data. The paper also discusses scalable solutions using the Expectation Maximization (EM) and variational EM algorithms for parameter estimation, highlighting the application of these models to predict user-item interactions effectively.
- Abstract(参考訳): パーソナライズされたコンテンツや製品,サービスなどがユーザエクスペリエンスの向上に不可欠である,現代のディジタルランドスケープにおいて,レコメンダシステムの重要性が高まっている。
本稿では,確率効果モデルと因子分析に着目し,レコメンデータシステムの統計モデルについて検討する。
ランダム・スロープを含むランダム・エフェクト・モデルを拡張し、ユーザやアイテム間で異なる共変量効果のキャプチャを可能にする。
さらに、リコメンデータシステムにおける因子分析の利用、特に不完全データの設定について検討する。
本稿では,予測最大化(EM)とパラメータ推定のための変分EMアルゴリズムを用いたスケーラブルな解についても論じ,これらのモデルのユーザ・イテム相互作用を効果的に予測するための応用を強調した。
関連論文リスト
- A Recommendation Model Utilizing Separation Embedding and Self-Attention for Feature Mining [7.523158123940574]
レコメンデーションシステムは、ユーザのニーズを満たすコンテンツをユーザに提供します。
従来のクリックスルーレート予測とTOP-Kレコメンデーションメカニズムはレコメンデーションのニーズを満たすことができない。
本稿では,ネットワーク間の分離に基づくレコメンデーションシステムモデルを提案する。
論文 参考訳(メタデータ) (2024-10-19T07:49:21Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
本稿では,レコメンデーションシステムを理解するための新しい情報理論手法を提案する。
9つのデータセットで7つのレコメンデーションアルゴリズムを評価し、測定値と標準的なパフォーマンス指標の関係を明らかにする。
論文 参考訳(メタデータ) (2024-10-03T13:02:07Z) - Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
本稿では,長期シナリオにおけるユーザ-リコメンダ間のインタラクションを模倣するシミュレーションフレームワークを提案する。
本稿では,ユーザの嗜好に対するアルゴリズムの影響を定量化する2つの新しい指標について紹介する。
論文 参考訳(メタデータ) (2024-09-24T21:54:22Z) - Exploring Popularity Bias in Session-based Recommendation [0.6798775532273751]
セッションベースの設定と適応確率計算に分析を拡張し、セッションベースのレコメンデーションタスクの独特な特性に適応する。
本研究では、異なるデータセット上での確率分布と異なる階層化手法について検討し、確率関連特性が実際にデータセット固有のものであることを見出した。
論文 参考訳(メタデータ) (2023-12-13T02:48:35Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
我々は多目的機械学習(ML)に適した人間中心型対話型HPO手法を提案する。
ユーザが自分のニーズに最も適した指標を推測する代わりに、私たちのアプローチは自動的に適切な指標を学習します。
論文 参考訳(メタデータ) (2023-09-07T09:22:05Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Out-of-sample scoring and automatic selection of causal estimators [0.0]
本稿では,CATEの場合と器楽変数問題の重要な部分集合に対する新しいスコアリング手法を提案する。
私たちはそれを、DoWhyとEconMLライブラリに依存するオープンソースパッケージで実装しています。
論文 参考訳(メタデータ) (2022-12-20T08:29:18Z) - Variational Factorization Machines for Preference Elicitation in
Large-Scale Recommender Systems [17.050774091903552]
本稿では, 標準のミニバッチ降下勾配を用いて容易に最適化できる因子化機械 (FM) の変分定式化を提案する。
提案アルゴリズムは,ユーザおよび項目パラメータに近似した後続分布を学習し,予測に対する信頼区間を導出する。
いくつかのデータセットを用いて、予測精度の点で既存の手法と同等または優れた性能を示す。
論文 参考訳(メタデータ) (2022-12-20T00:06:28Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
本稿では、予期せぬことを推奨プロセスに組み込んだ、新しいPersonalized Unexpected Recommender System(PURS)モデルについて述べる。
3つの実世界のデータセットに対する大規模なオフライン実験は、提案されたPURSモデルが最先端のベースラインアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2021-06-05T01:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。