Robust online reconstruction of continuous-time signals from a lean spike train ensemble code
- URL: http://arxiv.org/abs/2408.05950v2
- Date: Wed, 14 Aug 2024 16:43:36 GMT
- Title: Robust online reconstruction of continuous-time signals from a lean spike train ensemble code
- Authors: Anik Chattopadhyay, Arunava Banerjee,
- Abstract summary: This paper presents a signal processing framework that deterministically encodes continuous-time signals into spike trains.
It addresses the questions about representable signal classes and reconstruction bounds.
Experiments on a large audio dataset demonstrate excellent reconstruction accuracy at spike rates as low as one-fifth of the Nyquist rate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sensory stimuli in animals are encoded into spike trains by neurons, offering advantages such as sparsity, energy efficiency, and high temporal resolution. This paper presents a signal processing framework that deterministically encodes continuous-time signals into biologically feasible spike trains, and addresses the questions about representable signal classes and reconstruction bounds. The framework considers encoding of a signal through spike trains generated by an ensemble of neurons using a convolve-then-threshold mechanism with various convolution kernels. A closed-form solution to the inverse problem, from spike trains to signal reconstruction, is derived in the Hilbert space of shifted kernel functions, ensuring sparse representation of a generalized Finite Rate of Innovation (FRI) class of signals. Additionally, inspired by real-time processing in biological systems, an efficient iterative version of the optimal reconstruction is formulated that considers only a finite window of past spikes, ensuring robustness of the technique to ill-conditioned encoding; convergence guarantees of the windowed reconstruction to the optimal solution are then provided. Experiments on a large audio dataset demonstrate excellent reconstruction accuracy at spike rates as low as one-fifth of the Nyquist rate, while showing clear competitive advantage in comparison to state-of-the-art sparse coding techniques in the low spike rate regime.
Related papers
- Continuous signal sparse encoding using analog neuromorphic variability [0.0]
temporal signal encoding is crucial for low-power, always-on systems.
We propose an inspired framework by biological principles that leverages intrinsic neuronal variability to robustly encode continuous stimuli.
We show that our scheme is well-suited for low-power, low-latency processing of temporal data on analog neuromorphic substrates.
arXiv Detail & Related papers (2025-01-23T09:29:40Z) - A Differential Smoothness-based Compact-Dynamic Graph Convolutional Network for Spatiotemporal Signal Recovery [9.369246678101048]
This paper proposes a Compact-fold Con Graphal Network (CDCN) fortemporal signal recovery.
Experiments on real-world datasets show that CDCN significantly outperforms the state-of-the-art models fortemporal signal recovery.
arXiv Detail & Related papers (2024-08-06T06:42:53Z) - Tuning the Frequencies: Robust Training for Sinusoidal Neural Networks [1.5124439914522694]
We introduce a theoretical framework that explains the capacity property of sinusoidal networks.
We show how its layer compositions produce a large number of new frequencies expressed as integer combinations of the input frequencies.
Our method, referred to as TUNER, greatly improves the stability and convergence of sinusoidal INR training, leading to detailed reconstructions.
arXiv Detail & Related papers (2024-07-30T18:24:46Z) - Spatial Annealing for Efficient Few-shot Neural Rendering [73.49548565633123]
We introduce an accurate and efficient few-shot neural rendering method named textbfSpatial textbfAnnealing regularized textbfNeRF (textbfSANeRF)
By adding merely one line of code, SANeRF delivers superior rendering quality and much faster reconstruction speed compared to current few-shot neural rendering methods.
arXiv Detail & Related papers (2024-06-12T02:48:52Z) - Gegenbauer Graph Neural Networks for Time-varying Signal Reconstruction [4.6210788730570584]
Time-varying graph signals are a critical problem in machine learning and signal processing with broad applications.
We propose a novel approach that incorporates a learning module to enhance the accuracy of the downstream task.
We conduct extensive experiments on real datasets to evaluate the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-03-28T19:29:17Z) - Reinforcement Learning for Sampling on Temporal Medical Imaging
Sequences [0.0]
In this work, we apply double deep Q-learning and REINFORCE algorithms to learn the sampling strategy for dynamic image reconstruction.
We consider the data in the format of time series, and the reconstruction method is a pre-trained autoencoder-typed neural network.
We present a proof of concept that reinforcement learning algorithms are effective to discover the optimal sampling pattern.
arXiv Detail & Related papers (2023-08-28T23:55:23Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Denoising Diffusion Error Correction Codes [92.10654749898927]
Recently, neural decoders have demonstrated their advantage over classical decoding techniques.
Recent state-of-the-art neural decoders suffer from high complexity and lack the important iterative scheme characteristic of many legacy decoders.
We propose to employ denoising diffusion models for the soft decoding of linear codes at arbitrary block lengths.
arXiv Detail & Related papers (2022-09-16T11:00:50Z) - Efficient spike encoding algorithms for neuromorphic speech recognition [5.182266520875928]
Spiking Neural Networks (SNN) are very effective for neuromorphic processor implementations.
Real-valued signals are encoded as real-valued signals that are not well-suited to SNN.
In this paper, we study four spike encoding methods in the context of a speaker independent digit classification system.
arXiv Detail & Related papers (2022-07-14T17:22:07Z) - Meta-Learning Sparse Implicit Neural Representations [69.15490627853629]
Implicit neural representations are a promising new avenue of representing general signals.
Current approach is difficult to scale for a large number of signals or a data set.
We show that meta-learned sparse neural representations achieve a much smaller loss than dense meta-learned models.
arXiv Detail & Related papers (2021-10-27T18:02:53Z) - An Adaptive Sampling and Edge Detection Approach for Encoding Static
Images for Spiking Neural Networks [0.2519906683279152]
Spiking neural networks (SNNs) are considered to be the third generation of artificial neural networks.
We propose a method for encoding static images into temporal spike trains using edge detection and an adaptive signal sampling method.
arXiv Detail & Related papers (2021-10-19T19:31:52Z) - Modulated Periodic Activations for Generalizable Local Functional
Representations [113.64179351957888]
We present a new representation that generalizes to multiple instances and achieves state-of-the-art fidelity.
Our approach produces general functional representations of images, videos and shapes, and achieves higher reconstruction quality than prior works that are optimized for a single signal.
arXiv Detail & Related papers (2021-04-08T17:59:04Z) - Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image [94.42139459221784]
We propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm.
Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance.
arXiv Detail & Related papers (2021-03-01T19:19:38Z) - Short-Term Memory Optimization in Recurrent Neural Networks by
Autoencoder-based Initialization [79.42778415729475]
We explore an alternative solution based on explicit memorization using linear autoencoders for sequences.
We show how such pretraining can better support solving hard classification tasks with long sequences.
We show that the proposed approach achieves a much lower reconstruction error for long sequences and a better gradient propagation during the finetuning phase.
arXiv Detail & Related papers (2020-11-05T14:57:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.