論文の概要: DiagESC: Dialogue Synthesis for Integrating Depression Diagnosis into Emotional Support Conversation
- arxiv url: http://arxiv.org/abs/2408.06044v1
- Date: Mon, 12 Aug 2024 10:26:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 13:23:51.974133
- Title: DiagESC: Dialogue Synthesis for Integrating Depression Diagnosis into Emotional Support Conversation
- Title(参考訳): DiagESC:感情支援会話への抑うつ診断の統合のための対話合成
- Authors: Seungyeon Seo, Gary Geunbae Lee,
- Abstract要約: 先進的なメンタルヘルスマネジメントシステムのための診断感情支援会話タスクについて紹介する。
ユーザエクスペリエンスを維持しながら抑うつ症状を評価するためのDESCデータセットを開発した。
- 参考スコア(独自算出の注目度): 4.795837146925278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dialogue systems for mental health care aim to provide appropriate support to individuals experiencing mental distress. While extensive research has been conducted to deliver adequate emotional support, existing studies cannot identify individuals who require professional medical intervention and cannot offer suitable guidance. We introduce the Diagnostic Emotional Support Conversation task for an advanced mental health management system. We develop the DESC dataset to assess depression symptoms while maintaining user experience by utilizing task-specific utterance generation prompts and a strict filtering algorithm. Evaluations by professional psychological counselors indicate that DESC has a superior ability to diagnose depression than existing data. Additionally, conversational quality evaluation reveals that DESC maintains fluent, consistent, and coherent dialogues.
- Abstract(参考訳): メンタルヘルスケアのための対話システムは、精神的な苦痛を経験する個人に適切な支援を提供することを目的としている。
適切な感情的支援を提供するために広範な研究が行われてきたが、既存の研究は専門的な医療介入を必要とし、適切なガイダンスを提供することができない個人を特定することはできない。
先進的なメンタルヘルスマネジメントシステムのための診断感情支援会話タスクについて紹介する。
我々は,タスク固有の発話生成プロンプトと厳密なフィルタリングアルゴリズムを利用して,抑うつ症状の評価を行うDESCデータセットを開発した。
専門的な心理学的カウンセラーによる評価は、DESCが既存のデータよりもうつ病を診断する能力に優れていることを示している。
さらに、会話品質の評価により、DESCは流動的で一貫性があり、一貫性のある対話を維持していることが明らかになった。
関連論文リスト
- Multi-aspect Depression Severity Assessment via Inductive Dialogue System [5.156059061769101]
インダクティブ対話システム(MaDSA)を用いたマルチアスペクトうつ病重症度評価の新しい課題を提案する。
補助的感情分類タスクによる心理的対話応答を誘導するMaDSAの基礎システムを提案する。
我々は,感情ラベルとともに,抑うつの重大度を8つの側面で注釈付けした会話データセットを合成し,人間の評価によって頑健さを証明した。
論文 参考訳(メタデータ) (2024-10-29T08:00:08Z) - MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - Depression Diagnosis Dialogue Simulation: Self-improving Psychiatrist with Tertiary Memory [35.41386783586689]
本稿では,患者と精神科医の対話を模擬してうつ病診断を促進する自己改善型会話エージェントシステムであるエージェント・メンタル・クリニック(AMC)を紹介する。
本稿では,3次記憶構造,対話制御,およびメモリサンプリングモジュールから構成される精神科医エージェントを設計し,精神科医エージェントが反映するスキルを十分に活用し,抑うつリスクと自殺リスク診断の会話による高精度化を実現する。
論文 参考訳(メタデータ) (2024-09-20T14:25:08Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Towards Reliable and Empathetic Depression-Diagnosis-Oriented Chats [15.36217265716081]
本稿では,うつ病診断対話に適した,革新的な定義・生成フレームワークを提案する。
このフレームワークは、タスク指向の会話の信頼性と共感に関連したチャットの魅力を組み合わせる。
被曝実験の結果,うつ病診断におけるタスク完了と情緒的サポート生成に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-04-07T16:35:53Z) - Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking [27.96718892323191]
Depression-diagnosis-oriented chatは、自己表現の患者を誘導し、うつ病検出の主要な症状を収集することを目的としている。
最近の研究は、面接に基づくうつ病の診断をシミュレートするために、タスク指向対話とchitchatを組み合わせることに焦点を当てている。
対話をガイドするための明確なフレームワークは検討されていない。
論文 参考訳(メタデータ) (2024-03-12T07:17:01Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
K-ESConvは、感情支援対話システムのための、新しい学習に基づく知識注入手法である。
本研究では,情緒的支援データセットESConvを用いて,外部の専門的情緒的Q&Aフォーラムから知識を抽出し,組み込んだモデルを評価した。
論文 参考訳(メタデータ) (2023-12-16T08:10:10Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
本研究では,認知的歪み検出の課題について検討し,思考の早期発見(DoT)を提案する。
DoTは、事実と思考を分離するための主観的評価、思考と矛盾する推論プロセスを引き出すための対照的な推論、認知スキーマを要約するスキーマ分析という3つの段階を通して、患者のスピーチの診断を行う。
実験により、DoTは認知的歪み検出のためのChatGPTよりも大幅に改善され、一方で人間の専門家が承認した高品質な合理性を生成することが示された。
論文 参考訳(メタデータ) (2023-10-11T02:47:21Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
精神健康に対する短期的コビデンスの影響は、不安や抑うつ症状の顕著な増加であった。
本研究の目的は、健康な人とうつ病患者を識別するために、オンライン手書き・図面解析という新しいツールを使用することである。
論文 参考訳(メタデータ) (2023-02-05T22:33:49Z) - D4: a Chinese Dialogue Dataset for Depression-Diagnosis-Oriented Chat [25.852922703368133]
うつ病と診断された臨床セッションでは、医師は患者に症状を露呈させるための十分な感情的支援と会話を開始する。
精神疾患に関連する社会的便秘が原因でうつ病の相談や診断に関連する対話データが開示されることは稀である。
うつ病診断における医師と患者との対話をシミュレートした,うつ病診断指向チャットのための中国語対話データセットを構築した。
論文 参考訳(メタデータ) (2022-05-24T03:54:22Z) - Towards Emotional Support Dialog Systems [61.58828606097423]
本稿では,感情支援会話タスクを定義し,ヘルピングスキル理論に基づくESCフレームワークを提案する。
本研究では,豊かなアノテーション(特にサポート戦略)をヘルプシーカとサポーターモードで組み込んだ感情支援会話データセット(ESConv)を構築した。
情緒的サポートを提供する能力に関して、最先端の対話モデルを評価する。
論文 参考訳(メタデータ) (2021-06-02T13:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。