論文の概要: Lancelot: Towards Efficient and Privacy-Preserving Byzantine-Robust Federated Learning within Fully Homomorphic Encryption
- arxiv url: http://arxiv.org/abs/2408.06197v1
- Date: Mon, 12 Aug 2024 14:48:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 14:05:56.870678
- Title: Lancelot: Towards Efficient and Privacy-Preserving Byzantine-Robust Federated Learning within Fully Homomorphic Encryption
- Title(参考訳): Lancelot: 完全同型暗号化におけるビザンチン・ロバスト・フェデレーション学習の効率化とプライバシ保護を目指して
- Authors: Siyang Jiang, Hao Yang, Qipeng Xie, Chuan Ma, Sen Wang, Guoliang Xing,
- Abstract要約: 我々は,データプライバシを保ちながら悪意あるクライアント活動を保護するために,完全同型暗号化(FHE)を利用する,革新的で計算効率のよいBRFLフレームワークであるLancelotを提案する。
医用画像診断や広く使われている公開画像データセットを含む大規模なテストでは、Lancelotが既存の手法を著しく上回り、データのプライバシを維持しながら、処理速度を20倍以上に向上させています。
- 参考スコア(独自算出の注目度): 10.685816010576918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In sectors such as finance and healthcare, where data governance is subject to rigorous regulatory requirements, the exchange and utilization of data are particularly challenging. Federated Learning (FL) has risen as a pioneering distributed machine learning paradigm that enables collaborative model training across multiple institutions while maintaining data decentralization. Despite its advantages, FL is vulnerable to adversarial threats, particularly poisoning attacks during model aggregation, a process typically managed by a central server. However, in these systems, neural network models still possess the capacity to inadvertently memorize and potentially expose individual training instances. This presents a significant privacy risk, as attackers could reconstruct private data by leveraging the information contained in the model itself. Existing solutions fall short of providing a viable, privacy-preserving BRFL system that is both completely secure against information leakage and computationally efficient. To address these concerns, we propose Lancelot, an innovative and computationally efficient BRFL framework that employs fully homomorphic encryption (FHE) to safeguard against malicious client activities while preserving data privacy. Our extensive testing, which includes medical imaging diagnostics and widely-used public image datasets, demonstrates that Lancelot significantly outperforms existing methods, offering more than a twenty-fold increase in processing speed, all while maintaining data privacy.
- Abstract(参考訳): データガバナンスが厳格な規制要件の対象となっている金融や医療などの分野では、データの交換と利用が特に難しい。
フェデレートラーニング(FL)は、データ分散化を維持しながら、複数の機関間で協調的なモデルトレーニングを可能にする、分散機械学習パラダイムのパイオニアとして台頭した。
その利点にもかかわらず、FLは敵の脅威、特に中央サーバが管理するプロセスであるモデルアグリゲーション中の攻撃に対して脆弱である。
しかしながら、これらのシステムでは、ニューラルネットワークモデルには、意図せず記憶し、個々のトレーニングインスタンスを公開する能力がある。
攻撃者は、モデル自体に含まれる情報を活用することで、プライベートデータを再構築することができる。
既存のソリューションは、情報漏洩と計算効率の両方に対して完全に安全である、実用的でプライバシ保護のBRFLシステムを提供していない。
これらの問題に対処するため,データプライバシを保ちながら悪意あるクライアントアクティビティを保護し,完全同型暗号化(FHE)を利用する,革新的で効率的なBRFLフレームワークであるLancelotを提案する。
医用画像診断や広く使用されている公開画像データセットを含む大規模なテストでは、Lancelotが既存の手法を著しく上回り、データのプライバシを維持しながら、処理速度が20倍以上に向上することを示した。
関連論文リスト
- EPIC: Enhancing Privacy through Iterative Collaboration [4.199844472131922]
従来の機械学習技術は、中央集権的なデータ収集と処理を必要とする。
医療データを集中ストレージにプールする場合、プライバシ、オーナシップ、厳格な規制の問題が存在する。
フェデレートラーニング(FL)アプローチは、中央アグリゲータサーバと共有グローバルモデルを設定することで、そのような問題を克服する。
論文 参考訳(メタデータ) (2024-11-07T20:10:34Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - EncCluster: Scalable Functional Encryption in Federated Learning through Weight Clustering and Probabilistic Filters [3.9660142560142067]
フェデレートラーニング(FL)は、アグリゲーションサーバにのみローカルモデルの更新を通信することで、分散デバイス間のモデルトレーニングを可能にする。
FLはモデル更新送信中に推論攻撃に弱いままである。
本稿では、重みクラスタリングによるモデル圧縮と、最近の分散型FEとプライバシ強化データエンコーディングを統合する新しい方法であるEncClusterを提案する。
論文 参考訳(メタデータ) (2024-06-13T14:16:50Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
まず、医療メタバースのための分散型フェデレートラーニング(FL)に基づく、ユーザ中心のプライバシ保護フレームワークを設計する。
次に,情報時代(AoI)を有効データ更新度指標として利用し,観測理論(PT)に基づくAoIベースの契約理論モデルを提案し,センシングデータ共有の動機付けを行う。
論文 参考訳(メタデータ) (2023-07-29T12:54:03Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Federated Learning with Privacy-Preserving Ensemble Attention
Distillation [63.39442596910485]
Federated Learning(FL)は、多くのローカルノードがトレーニングデータを分散化しながら、中央モデルを協調的にトレーニングする機械学習パラダイムである。
本稿では,未ラベル公開データを利用した一方向オフライン知識蒸留のためのプライバシー保護FLフレームワークを提案する。
我々の技術は、既存のFLアプローチのような分散的で異質なローカルデータを使用するが、より重要なのは、プライバシー漏洩のリスクを著しく低減することです。
論文 参考訳(メタデータ) (2022-10-16T06:44:46Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - A Privacy-Preserving and Trustable Multi-agent Learning Framework [34.28936739262812]
本稿では,プライバシ保護と信頼性のある分散学習(PT-DL)を提案する。
PT-DLは、エージェントのデータに対する強力なプライバシ保護を保証するために、差分プライバシに依存する、完全に分散化されたフレームワークである。
本論文は,PT-DLが50%の衝突攻撃に対して,悪意のある信頼モデルで高い確率で回復可能であることを示す。
論文 参考訳(メタデータ) (2021-06-02T15:46:27Z) - Federated Learning in Adversarial Settings [0.8701566919381224]
フェデレートされた学習スキームは、堅牢性、プライバシ、帯域幅効率、モデルの精度の異なるトレードオフを提供します。
この拡張は、厳格なプライバシー要件があっても、プライベートではないがロバストなスキームと同じくらい効率的に機能することを示す。
これは差別化プライバシとロバストネスの基本的なトレードオフの可能性を示している。
論文 参考訳(メタデータ) (2020-10-15T14:57:02Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
本稿では,フェデレート学習に基づくGated Recurrent Unit Neural Network Algorithm (FedGRU) というプライバシ保護機械学習手法を提案する。
FedGRUは、現在の集中学習方法と異なり、安全なパラメータアグリゲーション機構を通じて、普遍的な学習モデルを更新する。
FedGRUの予測精度は、先進的なディープラーニングモデルよりも90.96%高い。
論文 参考訳(メタデータ) (2020-03-19T13:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。