論文の概要: Certified Safe: A Schematic for Approval Regulation of Frontier AI
- arxiv url: http://arxiv.org/abs/2408.06210v1
- Date: Mon, 12 Aug 2024 15:01:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 12:53:36.221673
- Title: Certified Safe: A Schematic for Approval Regulation of Frontier AI
- Title(参考訳): Certified Safe:フロンティアAIの承認規則
- Authors: Cole Salvador,
- Abstract要約: 承認規制スキームは、企業が法的に市場を拡大できない場合や、場合によっては、規制当局の明確な承認なしに製品を開発する場合である。
本報告では、トレーニング前に精査を開始し、デプロイ後の監視を継続する、最大規模のAIプロジェクトのみに対する承認規制スキーマを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent and unremitting capability advances have been accompanied by calls for comprehensive, rather than patchwork, regulation of frontier artificial intelligence (AI). Approval regulation is emerging as a promising candidate. An approval regulation scheme is one in which a firm cannot legally market, or in some cases develop, a product without explicit approval from a regulator on the basis of experiments performed upon the product that demonstrate its safety. This approach is used successfully by the FDA and FAA. Further, its application to frontier AI has been publicly supported by many prominent stakeholders. This report proposes an approval regulation schematic for only the largest AI projects in which scrutiny begins before training and continues through to post-deployment monitoring. The centerpieces of the schematic are two major approval gates, the first requiring approval for large-scale training and the second for deployment. Five main challenges make implementation difficult: noncompliance through unsanctioned deployment, specification of deployment readiness requirements, reliable model experimentation, filtering out safe models before the process, and minimizing regulatory overhead. This report makes a number of crucial recommendations to increase the feasibility of approval regulation, some of which must be followed urgently if such a regime is to succeed in the near future. Further recommendations, produced by this report's analysis, may improve the effectiveness of any regulatory regime for frontier AI.
- Abstract(参考訳): 近年の非制限能力の進歩には、パッチワークではなく、フロンティア人工知能(AI)の規制を包括的に求める声が伴っている。
承認規制は有望な候補として浮上している。
承認規制スキームは、その商品の安全性を示す実験に基づいて、規制当局の明確な承認を受けずに、企業が法的に市場を拡大できない場合、または、場合によっては製品を開発する場合である。
このアプローチはFDAとFAAがうまく利用している。
さらに、フロンティアAIへの適用は、多くの著名な利害関係者によって公に支持されている。
本報告では、トレーニング前に精査を開始し、デプロイ後の監視を継続する、最大規模のAIプロジェクトのみに対する承認規制スキーマを提案する。
スキーマの中心は2つの主要な承認ゲートであり、第1は大規模トレーニングの承認を必要とし、第2は配備の承認を必要とする。
5つの大きな課題は、非承認デプロイメントによる非コンプライアンス、デプロイメントの可読性要件の仕様、信頼性のあるモデル実験、プロセス前に安全なモデルをフィルタリングすること、規制のオーバーヘッドを最小限にすることである。
本報告は、承認規制の実現可能性を高めるための重要な勧告を多数実施するが、そのうちのいくつかは、近い将来にその体制が成功する場合には緊急に続行しなければならない。
このレポートの分析によって得られたさらなる勧告により、フロンティアAIの規制体制の有効性が向上する可能性がある。
関連論文リスト
- Declare and Justify: Explicit assumptions in AI evaluations are necessary for effective regulation [2.07180164747172]
規制は、開発者が評価に関する主要な前提を明示的に識別し、正当化する必要がある、と我々は主張する。
我々は、包括的脅威モデリング、プロキシタスクの妥当性、適切な能力付与など、AI評価における中核的な仮定を特定する。
提案したアプローチは,AI開発における透明性の向上を目標とし,先進的なAIシステムのより効果的なガバナンスに向けた実践的な道筋を提供する。
論文 参考訳(メタデータ) (2024-11-19T19:13:56Z) - Auction-Based Regulation for Artificial Intelligence [28.86995747151915]
本稿では,AIの安全性を規制するオークションベースの規制機構を提案する。
我々は、各参加エージェントの最善の戦略は、所定の最小限の安全閾値よりも安全なモデルを送ることであることを確実に保証する。
その結果,我々の規制オークションは,安全率と参加率を20%,参加率を15%向上させることがわかった。
論文 参考訳(メタデータ) (2024-10-02T17:57:02Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - An FDA for AI? Pitfalls and Plausibility of Approval Regulation for Frontier Artificial Intelligence [0.0]
我々は、フロンティアAIの規制に対する承認規制、すなわち、実験的なミニマと、その実験で部分的にまたは完全に条件付けられた政府のライセンスとを組み合わせた製品の適用性について検討する。
承認規制が単に適用されたとしても、フロンティアAIのリスクには不適当であると考える理由はいくつかある。
規制開発における政策学習と実験の役割を強調して締めくくる。
論文 参考訳(メタデータ) (2024-08-01T17:54:57Z) - From Principles to Rules: A Regulatory Approach for Frontier AI [2.1764247401772705]
レギュレータは、フロンティアAI開発者に安全対策を適用するよう要求する。
要件は、ハイレベルな原則や特定のルールとして定式化できる。
これらの規制アプローチは「原則ベース」および「ルールベース」規制と呼ばれ、補完的な強みと弱みを持っている。
論文 参考訳(メタデータ) (2024-07-10T01:45:15Z) - A Safe Harbor for AI Evaluation and Red Teaming [124.89885800509505]
一部の研究者は、そのような研究の実施や研究成果の公表が、アカウント停止や法的報復につながることを恐れている。
我々は、主要なAI開発者が法的、技術的に安全な港を提供することを約束することを提案します。
これらのコミットメントは、ジェネレーティブAIのリスクに取り組むための、より包括的で意図しないコミュニティ努力への必要なステップである、と私たちは信じています。
論文 参考訳(メタデータ) (2024-03-07T20:55:08Z) - The Decisive Power of Indecision: Low-Variance Risk-Limiting Audits and Election Contestation via Marginal Mark Recording [51.82772358241505]
リスクリミット監査(リスクリミット監査、RLA)は、大規模な選挙の結果を検証する技術である。
我々は、効率を改善し、統計力の進歩を提供する監査の新たなファミリーを定めている。
新しい監査は、複数の可能なマーク解釈を宣言できるように、キャストボイトレコードの標準概念を再考することで実現される。
論文 参考訳(メタデータ) (2024-02-09T16:23:54Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - Validation-Driven Development [54.50263643323]
本稿では,形式的開発における要件の検証を優先する検証駆動開発(VDD)プロセスを紹介する。
VDDプロセスの有効性は、航空業界におけるケーススタディを通じて実証されている。
論文 参考訳(メタデータ) (2023-08-11T09:15:26Z) - Frontier AI Regulation: Managing Emerging Risks to Public Safety [15.85618115026625]
脆弱なAI」モデルは、公共の安全に深刻なリスクをもたらすのに十分な危険能力を持つ可能性がある。
業界の自己規制は重要な第一歩です。
安全基準の最初のセットを提案する。
論文 参考訳(メタデータ) (2023-07-06T17:03:25Z) - Both eyes open: Vigilant Incentives help Regulatory Markets improve AI
Safety [69.59465535312815]
Regulatory Markets for AIは、適応性を考慮して設計された提案である。
政府はAI企業が達成すべき結果に基づく目標を設定する必要がある。
我々は、規制市場がこの目標を達成するのを阻止するインセンティブについて、非常に簡単に対応できることを警告する。
論文 参考訳(メタデータ) (2023-03-06T14:42:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。