Review-driven Personalized Preference Reasoning with Large Language Models for Recommendation
- URL: http://arxiv.org/abs/2408.06276v3
- Date: Sat, 14 Dec 2024 14:20:25 GMT
- Title: Review-driven Personalized Preference Reasoning with Large Language Models for Recommendation
- Authors: Jieyong Kim, Hyunseo Kim, Hyunjin Cho, SeongKu Kang, Buru Chang, Jinyoung Yeo, Dongha Lee,
- Abstract summary: EXP3RT is a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews.
It generates detailed step-by-step reasoning followed by predicted rating.
Experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation.
- Score: 21.769969074938142
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have demonstrated exceptional performance across a wide range of tasks, generating significant interest in their application to recommendation systems. However, existing methods have not fully capitalized on the potential of LLMs, often constrained by limited input information or failing to fully utilize their advanced reasoning capabilities. To address these limitations, we introduce EXP3RT, a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews. EXP3RT is basically fine-tuned through distillation from a teacher LLM to perform three key tasks in order: EXP3RT first extracts and encapsulates essential subjective preferences from raw reviews, aggregates and summarizes them according to specific criteria to create user and item profiles. It then generates detailed step-by-step reasoning followed by predicted rating, i.e., reasoning-enhanced rating prediction, by considering both subjective and objective information from user/item profiles and item descriptions. This personalized preference reasoning from EXP3RT enhances rating prediction accuracy and also provides faithful and reasonable explanations for recommendation. Extensive experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation, while significantly enhancing the explainability of recommendation systems.
Related papers
- LLM-based User Profile Management for Recommender System [15.854727020186408]
PURE builds and maintains evolving user profiles by systematically extracting and summarizing key information from user reviews.
We introduce a continuous sequential recommendation task that reflects real-world scenarios by adding reviews over time and updating predictions incrementally.
Our experimental results on Amazon datasets demonstrate that PURE outperforms existing LLM-based methods.
arXiv Detail & Related papers (2025-02-20T13:20:19Z) - Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
We propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal.
We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment.
arXiv Detail & Related papers (2025-02-04T07:17:54Z) - Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - RosePO: Aligning LLM-based Recommenders with Human Values [38.029251417802044]
We propose a general framework -- Recommendation with smoothing personalized Preference Optimization (RosePO)
RosePO better aligns with customized human values during the post-training stage.
Evaluation on three real-world datasets demonstrates the effectiveness of our method.
arXiv Detail & Related papers (2024-10-16T12:54:34Z) - On Softmax Direct Preference Optimization for Recommendation [50.896117978746]
We propose Softmax-DPO (S-DPO) to instill ranking information into the LM to help LM-based recommenders distinguish preferred items from negatives.
Specifically, we incorporate multiple negatives in user preference data and devise an alternative version of DPO loss tailored for LM-based recommenders.
arXiv Detail & Related papers (2024-06-13T15:16:11Z) - Uncertainty-Aware Explainable Recommendation with Large Language Models [15.229417987212631]
We develop a model that utilizes the ID vectors of user and item inputs as prompts for GPT-2.
We employ a joint training mechanism within a multi-task learning framework to optimize both the recommendation task and explanation task.
Our method achieves 1.59 DIV, 0.57 USR and 0.41 FCR on the Yelp, TripAdvisor and Amazon dataset respectively.
arXiv Detail & Related papers (2024-01-31T14:06:26Z) - Unlocking the Potential of Large Language Models for Explainable
Recommendations [55.29843710657637]
It remains uncertain what impact replacing the explanation generator with the recently emerging large language models (LLMs) would have.
In this study, we propose LLMXRec, a simple yet effective two-stage explainable recommendation framework.
By adopting several key fine-tuning techniques, controllable and fluent explanations can be well generated.
arXiv Detail & Related papers (2023-12-25T09:09:54Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - Set2setRank: Collaborative Set to Set Ranking for Implicit Feedback
based Recommendation [59.183016033308014]
In this paper, we explore the unique characteristics of the implicit feedback and propose Set2setRank framework for recommendation.
Our proposed framework is model-agnostic and can be easily applied to most recommendation prediction approaches.
arXiv Detail & Related papers (2021-05-16T08:06:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.