LLM-based User Profile Management for Recommender System
- URL: http://arxiv.org/abs/2502.14541v1
- Date: Thu, 20 Feb 2025 13:20:19 GMT
- Title: LLM-based User Profile Management for Recommender System
- Authors: Seunghwan Bang, Hwanjun Song,
- Abstract summary: PURE builds and maintains evolving user profiles by systematically extracting and summarizing key information from user reviews.
We introduce a continuous sequential recommendation task that reflects real-world scenarios by adding reviews over time and updating predictions incrementally.
Our experimental results on Amazon datasets demonstrate that PURE outperforms existing LLM-based methods.
- Score: 15.854727020186408
- License:
- Abstract: The rapid advancement of Large Language Models (LLMs) has opened new opportunities in recommender systems by enabling zero-shot recommendation without conventional training. Despite their potential, most existing works rely solely on users' purchase histories, leaving significant room for improvement by incorporating user-generated textual data, such as reviews and product descriptions. Addressing this gap, we propose PURE, a novel LLM-based recommendation framework that builds and maintains evolving user profiles by systematically extracting and summarizing key information from user reviews. PURE consists of three core components: a Review Extractor for identifying user preferences and key product features, a Profile Updater for refining and updating user profiles, and a Recommender for generating personalized recommendations using the most current profile. To evaluate PURE, we introduce a continuous sequential recommendation task that reflects real-world scenarios by adding reviews over time and updating predictions incrementally. Our experimental results on Amazon datasets demonstrate that PURE outperforms existing LLM-based methods, effectively leveraging long-term user information while managing token limitations.
Related papers
- Interactive Visualization Recommendation with Hier-SUCB [52.11209329270573]
We propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions.
For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual semi-bandit in the PVisRec setting.
arXiv Detail & Related papers (2025-02-05T17:14:45Z) - Reason4Rec: Large Language Models for Recommendation with Deliberative User Preference Alignment [69.11529841118671]
We propose a new Deliberative Recommendation task, which incorporates explicit reasoning about user preferences as an additional alignment goal.
We then introduce the Reasoning-powered Recommender framework for deliberative user preference alignment.
arXiv Detail & Related papers (2025-02-04T07:17:54Z) - Preference Discerning with LLM-Enhanced Generative Retrieval [28.309905847867178]
We propose a new paradigm, which we term preference discerning.
In preference dscerning, we explicitly condition a generative sequential recommendation system on user preferences within its context.
We generate user preferences using Large Language Models (LLMs) based on user reviews and item-specific data.
arXiv Detail & Related papers (2024-12-11T18:26:55Z) - Review-driven Personalized Preference Reasoning with Large Language Models for Recommendation [21.769969074938142]
EXP3RT is a novel LLM-based recommender designed to leverage rich preference information contained in user and item reviews.
It generates detailed step-by-step reasoning followed by predicted rating.
Experiments show that EXP3RT outperforms existing methods on both rating prediction and candidate item reranking for top-k recommendation.
arXiv Detail & Related papers (2024-08-12T16:39:03Z) - InteraRec: Screenshot Based Recommendations Using Multimodal Large Language Models [0.6926105253992517]
We introduce a sophisticated and interactive recommendation framework denoted as InteraRec.
InteraRec captures high-frequency screenshots of web pages as users navigate through a website.
We demonstrate the effectiveness of InteraRec in providing users with valuable and personalized offerings.
arXiv Detail & Related papers (2024-02-26T17:47:57Z) - LLMRS: Unlocking Potentials of LLM-Based Recommender Systems for
Software Purchase [0.6597195879147557]
Large Language Models (LLM) offer promising results for analyzing user queries.
We propose LLMRS, an LLM-based zero-shot recommender system where we employ pre-trained LLM to encode user reviews into a review score and generate user-tailored recommendations.
arXiv Detail & Related papers (2024-01-12T16:33:17Z) - Explainable Active Learning for Preference Elicitation [0.0]
We employ Active Learning (AL) to solve the addressed problem with the objective of maximizing information acquisition with minimal user effort.
AL operates for selecting informative data from a large unlabeled set to inquire an oracle to label them.
It harvests user feedback (given for the system's explanations on the presented items) over informative samples to update an underlying machine learning (ML) model.
arXiv Detail & Related papers (2023-09-01T09:22:33Z) - Recommendation as Instruction Following: A Large Language Model
Empowered Recommendation Approach [83.62750225073341]
We consider recommendation as instruction following by large language models (LLMs)
We first design a general instruction format for describing the preference, intention, task form and context of a user in natural language.
Then we manually design 39 instruction templates and automatically generate a large amount of user-personalized instruction data.
arXiv Detail & Related papers (2023-05-11T17:39:07Z) - Editable User Profiles for Controllable Text Recommendation [66.00743968792275]
We propose LACE, a novel concept value bottleneck model for controllable text recommendations.
LACE represents each user with a succinct set of human-readable concepts.
It learns personalized representations of the concepts based on user documents.
arXiv Detail & Related papers (2023-04-09T14:52:18Z) - PURS: Personalized Unexpected Recommender System for Improving User
Satisfaction [76.98616102965023]
We describe a novel Personalized Unexpected Recommender System (PURS) model that incorporates unexpectedness into the recommendation process.
Extensive offline experiments on three real-world datasets illustrate that the proposed PURS model significantly outperforms the state-of-the-art baseline approaches.
arXiv Detail & Related papers (2021-06-05T01:33:21Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.