Towards tolerant testing stabilizer states
- URL: http://arxiv.org/abs/2408.06289v2
- Date: Tue, 22 Oct 2024 17:20:25 GMT
- Title: Towards tolerant testing stabilizer states
- Authors: Srinivasan Arunachalam, Arkopal Dutt,
- Abstract summary: We prove an inverse theorem for the Gowers-$3$ norm of states and bounds on stabilizer covering for structured subsets of Paulis.
Our proof includes a new definition of Gowers norm for quantum states, an inverse theorem for the Gowers-$3$ norm of states and new bounds on stabilizer covering for structured subsets of Paulis.
- Score: 4.65004369765875
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the following task: suppose an algorithm is given copies of an unknown $n$-qubit quantum state $|\psi\rangle$ promised $(i)$ $|\psi\rangle$ is $\varepsilon_1$-close to a stabilizer state in fidelity or $(ii)$ $|\psi\rangle$ is $\varepsilon_2$-far from all stabilizer states, decide which is the case. We show two results: (i) Assuming $|\psi\rangle$ is a phase state, i.e., $|\psi\rangle=\frac{1}{\sqrt{2^n}}\sum \limits_{x \in \{0,1\}^n} {f(x)}|x\rangle$ where $f:\{0,1\}^n\rightarrow \{-1,1\}$, then we give a $\textsf{poly}(1/\varepsilon_1)$ sample and $n\cdot \textsf{poly}(1/\varepsilon_1)$ time algorithm for every $\varepsilon_1 > 0$ and $\varepsilon_2 \leq \textsf{poly}(\varepsilon_1)$, for tolerant testing stabilizer states. (ii) For arbitrary quantum states $|\psi\rangle$, assuming a conjecture in additive combinatorics, we give a $\textsf{poly}(1/\varepsilon_1)$-sample and $n\cdot \textsf{poly}(1/\varepsilon_1)$-time algorithm for this task for every $\varepsilon_1>0$ and $\varepsilon_2\leq 2^{-\textsf{poly}(1/\varepsilon_1)}$ Our proof includes a new definition of Gowers norm for quantum states, an inverse theorem for the Gowers-$3$ norm of states and new bounds on stabilizer covering for structured subsets of Paulis using results in additive combinatorics.
Related papers
- A note on polynomial-time tolerant testing stabilizer states [6.458742319938316]
We show an improved inverse theorem for the Gowers-$3$ of $n$-qubit quantum states $|psirangle.
For every $gammageq 0$, if the $textsfGowers(|psi rangle,3)8 geq gamma then stabilizer fidelity of $|psirangle$ is at least $gammaC$ for some constant $C>1$.
arXiv Detail & Related papers (2024-10-29T16:49:33Z) - Almost Minimax Optimal Best Arm Identification in Piecewise Stationary Linear Bandits [55.957560311008926]
We propose a piecewise stationary linear bandit (PSLB) model where the quality of an arm is measured by its return averaged over all contexts.
PS$varepsilon$BAI$+$ is guaranteed to identify an $varepsilon$-optimal arm with probability $ge 1-delta$ and with a minimal number of samples.
arXiv Detail & Related papers (2024-10-10T06:15:42Z) - Dimension Independent Disentanglers from Unentanglement and Applications [55.86191108738564]
We construct a dimension-independent k-partite disentangler (like) channel from bipartite unentangled input.
We show that to capture NEXP, it suffices to have unentangled proofs of the form $| psi rangle = sqrta | sqrt1-a | psi_+ rangle where $| psi_+ rangle has non-negative amplitudes.
arXiv Detail & Related papers (2024-02-23T12:22:03Z) - Low-Stabilizer-Complexity Quantum States Are Not Pseudorandom [1.0323063834827415]
We show that quantum states with "low stabilizer complexity" can be efficiently distinguished from Haar-random.
We prove that $omega(log(n))$ $T$-gates are necessary for any Clifford+$T$ circuit to prepare computationally pseudorandom quantum states.
arXiv Detail & Related papers (2022-09-29T03:34:03Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Learning low-degree functions from a logarithmic number of random
queries [77.34726150561087]
We prove that for any integer $ninmathbbN$, $din1,ldots,n$ and any $varepsilon,deltain(0,1)$, a bounded function $f:-1,1nto[-1,1]$ of degree at most $d$ can be learned.
arXiv Detail & Related papers (2021-09-21T13:19:04Z) - The Price of Tolerance in Distribution Testing [31.10049510641336]
We show the sample complexity to be [fracsqrtnvarepsilon2 + fracnlog n cdotmaxleftfracvarepsilon2, providing a smooth tradeoff between the two previously known cases.
We also provide a similar characterization for the problem of tolerant equivalence testing, where both $p$ and $q$ are unknown.
arXiv Detail & Related papers (2021-06-25T03:59:42Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Fast digital methods for adiabatic state preparation [0.0]
We present a quantum algorithm for adiabatic state preparation on a gate-based quantum computer, with complexity polylogarithmic in the inverse error.
arXiv Detail & Related papers (2020-04-08T18:00:01Z) - Tight Quantum Lower Bound for Approximate Counting with Quantum States [49.6558487240078]
We prove tight lower bounds for the following variant of the counting problem considered by Aaronson, Kothari, Kretschmer, and Thaler ( 2020)
The task is to distinguish whether an input set $xsubseteq [n]$ has size either $k$ or $k'=(1+varepsilon)k$.
arXiv Detail & Related papers (2020-02-17T10:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.