Wireless Channel Aware Data Augmentation Methods for Deep Learning-Based Indoor Localization
- URL: http://arxiv.org/abs/2408.06452v2
- Date: Wed, 28 Aug 2024 01:46:48 GMT
- Title: Wireless Channel Aware Data Augmentation Methods for Deep Learning-Based Indoor Localization
- Authors: Omer Gokalp Serbetci, Daoud Burghal, Andreas F. Molisch,
- Abstract summary: We propose methods that utilize the domain knowledge about wireless propagation channels and devices.
We show that in the low-data regime, localization accuracy increases up to 50%, matching non-augmented results in the high-data regime.
The proposed methods may outperform the measurement-only high-data performance by up to 33% using only 1/4 of the amount of measured data.
- Score: 22.76179980847908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Indoor localization is a challenging problem that - unlike outdoor localization - lacks a universal and robust solution. Machine Learning (ML), particularly Deep Learning (DL), methods have been investigated as a promising approach. Although such methods bring remarkable localization accuracy, they heavily depend on the training data collected from the environment. The data collection is usually a laborious and time-consuming task, but Data Augmentation (DA) can be used to alleviate this issue. In this paper, different from previously used DA, we propose methods that utilize the domain knowledge about wireless propagation channels and devices. The methods exploit the typical hardware component drift in the transceivers and/or the statistical behavior of the channel, in combination with the measured Power Delay Profile (PDP). We comprehensively evaluate the proposed methods to demonstrate their effectiveness. This investigation mainly focuses on the impact of factors such as the number of measurements, augmentation proportion, and the environment of interest impact the effectiveness of the different DA methods. We show that in the low-data regime (few actual measurements available), localization accuracy increases up to 50%, matching non-augmented results in the high-data regime. In addition, the proposed methods may outperform the measurement-only high-data performance by up to 33% using only 1/4 of the amount of measured data. We also exhibit the effect of different training data distribution and quality on the effectiveness of DA. Finally, we demonstrate the power of the proposed methods when employed along with Transfer Learning (TL) to address the data scarcity in target and/or source environments.
Related papers
- Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Efficient Ensembles Improve Training Data Attribution [12.180392191924758]
Training data attribution methods aim to quantify the influence of individual data points on model predictions, with broad applications in data-centric AI.
Existing methods in this field, which can be categorized as retraining-based and gradient-based methods, have struggled with naive trade-off attribution efficacy.
Recent research has shown that augmenting gradient-based methods with ensembles of multiple independently trained models can achieve significantly better attribution.
arXiv Detail & Related papers (2024-05-27T15:58:34Z) - On the Influence of Data Resampling for Deep Learning-Based Log Anomaly Detection: Insights and Recommendations [10.931620604044486]
This study provides an in-depth analysis of the impact of diverse data resampling methods on existingAD approaches.
We assess the performance of theseAD approaches across four datasets with different levels of class imbalance.
We evaluate the effectiveness of the data resampling methods when utilizing optimal resampling ratios of normal to abnormal data.
arXiv Detail & Related papers (2024-05-06T14:01:05Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - A Semi-Supervised Learning Approach for Ranging Error Mitigation Based
on UWB Waveform [29.827191184889898]
We propose a semi-supervised learning method based on variational Bayes for UWB ranging error mitigation.
Our method can efficiently accumulate knowledge from both labeled and unlabeled data samples.
arXiv Detail & Related papers (2023-05-23T10:08:42Z) - Causal Deep Reinforcement Learning Using Observational Data [11.790171301328158]
We propose two deconfounding methods in deep reinforcement learning (DRL)
The methods first calculate the importance degree of different samples based on the causal inference technique, and then adjust the impact of different samples on the loss function.
We prove the effectiveness of our deconfounding methods and validate them experimentally.
arXiv Detail & Related papers (2022-11-28T14:34:39Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.