論文の概要: Generalization Enhancement Strategies to Enable Cross-year Cropland Mapping with Convolutional Neural Networks Trained Using Historical Samples
- arxiv url: http://arxiv.org/abs/2408.06467v1
- Date: Mon, 12 Aug 2024 19:42:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:17:34.813358
- Title: Generalization Enhancement Strategies to Enable Cross-year Cropland Mapping with Convolutional Neural Networks Trained Using Historical Samples
- Title(参考訳): 歴史サンプルを用いた畳み込みニューラルネットワークによるクロス年作物マッピングの実現のための一般化戦略
- Authors: Sam Khallaghi, Rahebe Abedi, Hanan Abou Ali, Mary Dziedzorm Asipunu, Ismail Alatise, Nguyen Ha, Boka Luo, Cat Mai, Lei Song, Amos Wussah, Sitian Xiong, Qi Zhang, Lyndon D. Estes,
- Abstract要約: 大面積の農地をマッピングする精度は、高解像度衛星画像と深層学習(DL)モデルにより着実に改善されている。
しかし、効果的なDLモデルを開発するには、多くの場合、大きくて高価なラベルデータセットが必要である。
これは、農業の慣行や環境条件の変化により、年と地域の間でドメインシフトが発生するため、農業監視に不可欠な年次マップを作成する能力を制限する。
- 参考スコア(独自算出の注目度): 5.703107376077042
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The accuracy of mapping agricultural fields across large areas is steadily improving with high-resolution satellite imagery and deep learning (DL) models, even in regions where fields are small and geometrically irregular. However, developing effective DL models often requires large, expensive label datasets, typically available only for specific years or locations. This limits the ability to create annual maps essential for agricultural monitoring, as domain shifts occur between years and regions due to changes in farming practices and environmental conditions. The challenge is to design a model flexible enough to account for these shifts without needing yearly labels. While domain adaptation techniques or semi-supervised training are common solutions, we explored enhancing the model's generalization power. Our results indicate that a holistic approach is essential, combining methods to improve generalization. Specifically, using an area-based loss function, such as Tversky-focal loss (TFL), significantly improved predictions across multiple years. The use of different augmentation techniques helped to encode different types of invariance, particularly photometric augmentations encoded invariance to brightness changes, though they increased false positives. The combination of photometric augmentation, TFL loss, and MC-dropout produced the best results, although dropout alone led to more false negatives in subsequent year predictions. Additionally, the choice of input normalization had a significant impact, with the best results obtained when statistics were calculated either locally or across the entire dataset over all bands (lab and gab). We developed a workflow that enabled a U-Net model to generate effective multi-year crop maps over large areas. Our code, available at: https://github.com/agroimpacts/cnn-generalization-enhancement, will be regularly updated with improvements.
- Abstract(参考訳): 田畑が小さく、幾何学的に不規則な地域であっても、高解像度の衛星画像と深層学習(DL)モデルにより、広い地域にわたって農地をマッピングする精度は着実に向上している。
しかし、効果的なDLモデルを開発するには、多くの場合、大きくて高価なラベルデータセットが必要である。
これは、農業の慣行や環境条件の変化により、年と地域の間でドメインシフトが発生するため、農業監視に不可欠な年次マップを作成する能力を制限する。
課題は、年間ラベルを必要とせずに、これらのシフトを考慮するのに十分なフレキシブルなモデルを設計することだ。
ドメイン適応技術や半教師付きトレーニングは一般的なソリューションであるが、モデルの一般化能力の強化について検討した。
本結果は,一般化の方法を組み合わせることによって,全体論的なアプローチが不可欠であることを示唆している。
具体的には、Tversky-focal loss (TFL)のような領域に基づく損失関数を用いて、数年にわたって予測を大幅に改善した。
異なる拡張技術を使用することは、異なるタイプの不変性を符号化する助けとなり、特に光度増大は、光度の変化に対して不変性を符号化するが、偽陽性を増大させた。
光度増大、TFL損失、MCドロップアウトの組み合わせは、最も良い結果をもたらしたが、ドロップアウトだけでは、その後の年次予測では、より偽陰性になった。
さらに、入力正規化の選択は、すべての帯域(ラブとガブ)にわたるデータセット全体または局所的に統計が計算されたときに得られる最良の結果に大きく影響した。
我々は、U-Netモデルを用いて、大規模で効率的な多年作物地図を作成できるワークフローを開発した。
私たちのコードは、https://github.com/agroimpacts/cnn- generalization-enhancementで利用可能で、改善とともに定期的に更新されます。
関連論文リスト
- Learning from Limited and Imperfect Data [6.30667368422346]
我々は,現実世界に存在する限られた不完全なデータから学習できるディープニューラルネットワークの実用的なアルゴリズムを開発した。
これらの作品は4つのセグメントに分けられ、それぞれが限られたデータや不完全なデータから学ぶシナリオをカバーしている。
論文 参考訳(メタデータ) (2024-11-11T18:48:31Z) - Cross Domain Early Crop Mapping using CropSTGAN [12.271756709807898]
本稿では,Crop Mapping Spectral-temporal Generative Adrial Neural Network (CropSTGAN)を紹介する。
CropSTGANは、ターゲットドメインのスペクトル特徴をソースドメインのスペクトル特徴に変換することを学習し、実質的に大きな相似性をブリッジする。
実験では、CropSTGANは様々な最先端(SOTA)メソッドに対してベンチマークされる。
論文 参考訳(メタデータ) (2024-01-15T00:27:41Z) - CNN Feature Map Augmentation for Single-Source Domain Generalization [6.053629733936548]
ドメイン・ジェネリゼーション(DG)はここ数年で大きな注目を集めている。
DGの目標は、トレーニング中に利用可能なものと異なるデータ分散を提示した場合、引き続き正常に機能するモデルを作成することだ。
単一ソースDG画像分類設定における畳み込みニューラルネットワークアーキテクチャの代替正則化手法を提案する。
論文 参考訳(メタデータ) (2023-05-26T08:48:17Z) - Domain Adaptive and Generalizable Network Architectures and Training
Strategies for Semantic Image Segmentation [108.33885637197614]
教師なしドメイン適応(UDA)とドメイン一般化(DG)により、ソースドメインでトレーニングされた機械学習モデルは、ラベルなしまたは目に見えないターゲットドメインでうまく機能する。
UDA&DGのマルチレゾリューション・フレームワークであるHRDAを提案する。このフレームワークは、細かなセグメンテーションの詳細を保存するための小さな高分解能作物の強度と、学習されたスケールの注意を伴って長距離のコンテキスト依存を捕捉する大規模な低分解能作物の強度を組み合わせたものである。
論文 参考訳(メタデータ) (2023-04-26T15:18:45Z) - Comparison of machine learning algorithms for merging gridded satellite
and earth-observed precipitation data [7.434517639563671]
我々は,グローバル・ヒストリカル・クリマトロジー・ネットワークの月次降水データ,バージョン2。
その結果,2乗誤差スコアリング関数が最も正確であることが示唆された。
論文 参考訳(メタデータ) (2022-12-17T09:39:39Z) - When Neural Networks Fail to Generalize? A Model Sensitivity Perspective [82.36758565781153]
ドメイン一般化 (Domain Generalization, DG) は、異なる分布の下で見えないドメインでうまく機能するようにモデルを訓練することを目的としている。
本稿では,より現実的で,より困難なシナリオである単一領域一般化(Single-DG)について考察する。
我々は「モデル感度」と命名する一般化と強く相関するモデルの性質を経験的に確認する。
本稿では、高感度の周波数をターゲットとした拡張画像を生成するために、スペクトル逆データ拡張(SADA)の新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-12-01T20:15:15Z) - Hyperparameter-free Continuous Learning for Domain Classification in
Natural Language Understanding [60.226644697970116]
ドメイン分類は自然言語理解(NLU)の基本課題である
既存の継続的な学習アプローチの多くは、低い精度とパフォーマンスの変動に悩まされている。
本研究では,テキストデータに対するパラメータフリー連続学習モデルを提案する。
論文 参考訳(メタデータ) (2022-01-05T02:46:16Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
本稿では,CNNの長期分布からネットワーク学習を改善するための2つの効果的な修正を提案する。
まず,ネットワーク分類器の学習と予測を改善するために,CAMC (Class Activation Map) モジュールを提案する。
第2に,長期化問題における表現学習における正規化分類器の利用について検討する。
論文 参考訳(メタデータ) (2021-08-29T05:45:03Z) - A Batch Normalization Classifier for Domain Adaptation [0.0]
トレーニングセット外の予期せぬデータにモデルを適応させることは、新しいアプローチを動機づけ続ける一般的な問題である。
本研究では,ソフトマックスアクティベーション前の出力層におけるバッチ正規化の適用により,改良されたResNetモデルにおける視覚データ領域間の一般化が向上することを示す。
論文 参考訳(メタデータ) (2021-03-22T08:03:44Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
領域適応法は、2つの領域間の分布がシフトし、それを認識しようとすると仮定する。
グラフ埋め込みに基づく汎用フレームワークを提案する。
提案手法が強力なドメイン適応フレームワークにつながることを示す。
論文 参考訳(メタデータ) (2020-03-09T12:25:13Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。